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ABSTRACT
Fuzzing technologies have evolved at a fast pace in recent years,
revealing bugs in programs with ever increasing depth and speed.
Applications working with complex formats are however more
difficult to take on, as inputs need to meet certain format-specific
characteristics to get through the initial parsing stage and reach
deeper behaviors of the program.

Unlike prior proposals based on manually written format spec-
ifications, we propose a technique to automatically generate and
mutate inputs for unknown chunk-based binary formats. We iden-
tify dependencies between input bytes and comparison instructions,
and use them to assign tags that characterize the processing logic
of the program. Tags become the building block for structure-aware
mutations involving chunks and fields of the input.

Our technique can perform comparably to structure-aware fuzzing
proposals that require human assistance. Our prototype implemen-
tation Weizz revealed 16 unknown bugs in widely used programs.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging; Software verification and validation; • Security and privacy
→ Software and application security.
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1 INTRODUCTION
Recent years have witnesses a spike of activity in the development
of efficient techniques for fuzz testing, also known as fuzzing. In
particular, the coverage-based grey-box fuzzing (CGF) approach
has proven to be very effective for finding bugs often indicative of
weaknesses from a security standpoint. The availability of the AFL
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fuzzing framework [36] paved the way to a large body of works
proposing not only more efficient implementations, but also new
techniques to deal with common fuzzing roadblocks represented
by magic numbers and checksum tests in programs. Nonetheless,
there are still several popular application scenarios that make hard
cases even for the most advanced CGF fuzzers.

CGF fuzzers operate by mutating inputs at the granularity of
their bit and byte representations, deeming mutated inputs inter-
esting when they lead execution to explore new program portions.
While this approach works very well for compact and unstructured
inputs [30], it can lose efficacy for highly structured inputs that
must conform to some grammar or other type of specification.

Intuitively, “undisciplined”mutationsmake a fuzzer spend impor-
tant time in generating many inputs that the initial parsing stages of
some program typically rejects, resulting in little-to-none code cov-
erage improvement. Researchers thus have added a user-supplied
specification to the picture to produce and prioritize meaningful
inputs: enhanced CGF embodiments of this kind are available for
both grammar-based [4, 30] and chunk-based [24] formats, with
the latter seeming prevalent among real-world software [24].

The shortcomings of this approach are readily apparent. Appli-
cations typically do not come with format specifications suitable to
this end. Asking users to write one is at oddswith a driving factor be-
hind the success of CGF fuzzers, that is, they work with a minimum
amount of prior knowledge [5]. Such a request can be expensive,
and hardly applies to security contexts where users deal with pro-
prietary or undocumented formats [8]. The second limitation is that
testing only inputs perfectly adhering to the specification would
miss imprecisions in the implementation, while inputs that are to
some degree outside it may instead exercise them [8].

Our approach. The main feature of our proposal can be summa-
rized as: we attempt to learn how some chunk-based input structure
may look like based on how a program handles its bytes.

Nuances of this idea are present in [8] where code coverage
guides grammar structure inference, and to some extent in a few
general-purpose fuzzing additions. For instance, taint tracking can
reveal which input bytes take part in comparisons with magic se-
quences [10, 25], while input-to-state relationships [5] can identify
also checksum fields using values observed as comparison operands.

We build on the intuition that among comparisons operating on
input-derived data, we can deem some as tightly coupled to a single
portion of the input structure. We also experimentally observed
that the order in which a program exercises these checks can reveal
structural details such as the location for the type specifier of a
chunk. We tag input bytes with the most representative comparison
for their processing, and heuristically infer plausible boundaries
for chunks and fields. With this automatic pipeline, we can apply
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structure-aware mutations for chunk-based grey-box fuzzing [24]
without the need for a user-supplied format specification.

We start by determining candidate instructions that we can con-
sider relevant with respect to an input byte. Instead of resorting
to taint tracking, we flip bits in every input byte, execute the pro-
gram, and build a dependency vector for operands at comparison
instruction sites.We analyze dependencies to identify input-to-state
relationships and roadblocks, and to assign tags to input bytes. Tag
assignment builds on spatial and temporal properties, as a program
typically uses distinct instructions in the form of comparisons to
parse distinct items. To break ties we prioritize older instructions
as format validation normally happens early in the execution. Tags
drive the inference process of an approximate chunk-based struc-
ture of the input, enabling subsequent structure-aware mutations.

Unlike reverse engineering scenarios for reconstructing specifi-
cations of input formats [12, 18, 19], experimental results suggest
that in this context an inference process does not have to be fully ac-
curate: fuzzing can deal with some amount of noise and imprecision.
Another important consideration is that a specification does not
prescribe how its implementation should look like. Developers can
share code among functionalities, introducing subtle bugs: we have
observed this phenomenon for instance in applications that operate
on multiple input formats. Also, they can devise optimized variants
of one functionality, specialized on e.g. value ranges of some rele-
vant input field. As we assign tags and attempt inference over one
input instance at a time, we have a chance to identify and exercise
such patterns when aiming for code coverage improvements.

Contributions. By using information that is within immediate
reach of a fuzzer in its usual work, we propose a method to infer
an approximate structure for a chunk-based input and then mutate
it in a fully automatic manner. Throughout the paper we present:
• a dependency identification technique embedded in the de-
terministic mutation stage of grey-box fuzzing;
• a tag assignment mechanism that uses such dependencies to
overcome fuzzing roadblocks and to back a structure infer-
ence scheme for chunk-based formats;
• an implementation of the approach calledWeizz.

In our experiments Weizz beats or matches a chunk-based CGF
proposal that requires a format specification, and outperforms sev-
eral general-purpose fuzzers over the applications we considered.
We make Weizz available as open source at:

https://github.com/andreafioraldi/weizz-fuzzer

2 STATE OF THE ART
The last years have seen a large body of fuzzing-related works [37].
Grey-box fuzzers have gradually replaced initial black-box fuzzing
proposals where mutation decisions happen without taking into
account their impact on the execution path [29]. Coverage-based
grey-box fuzzing (CGF) uses lightweight instrumentation to mea-
sure code coverage, which discriminates whether mutated inputs
are sufficiently “interesting” by looking at control-flow changes.

CGF is very effective in discovering bugs in real software [24], but
may struggle in the presence of roadblocks (like magic numbers and
checksums) [5], or when mutating structured grammar-based [8]
or chunk-based [24] input formats. In this section we will describe
the workings of the popular CGF engine thatWeizz builds upon,

and recent proposals that cope with the challenges listed above. We
conclude by discussing whereWeizz fits in this landscape.

2.1 Coverage-Based Fuzzing
American Fuzzy Lop (AFL) [36] is a very well-known CGF fuzzer
and several research works have built on it to improve its effec-
tiveness. To build new inputs, AFL draws from a queue of initial
user-supplied seeds and previously generated inputs, and runs two
mutation stages. Both the deterministic and the havoc nondetermin-
istic stage look for coverage improvements and crashes. AFL adds
to the queue inputs that improve the coverage of the program, and
reports crashing inputs to users as proofs for bugs.

Coverage. AFL adds instrumentation to a binary program to
intercept when a branch is hit during the execution. To efficiently
track hit counts, it uses a coverage map of branches indexed by a
hash of its source and destination basic block addresses. AFL deems
an input interesting when the execution path reaches a branch
that yields a previously unseen hit count. To limit the number of
monitored inputs and discard likely similar executions, hit counts
undergo a normalization step (power-of-two buckets) for lookup.

Mutations. The deterministic stage of AFL sequentially scans
the input, applying for each position a set of mutations such as bit
or byte flipping, arithmetic increments and decrements, substitu-
tion with common constants (e.g., 0, -1, MAX_INT) or values from
a user-supplied dictionary. AFL tests each mutation in isolation
by executing the program on the derived input and inspecting the
coverage, then it reverts the change and moves to another.

The havoc stage of AFL applies a nondeterministic sequence (or
stack) of mutations before attempting execution. Mutations come
in a random number (1 to 256) and consists in flips, increments,
decrements, deletions, etc. at a random position in the input.

2.2 Roadblocks
Roadblocks are comparison patterns over the input that are intrin-
sically hard to overcome through blind mutations: the two most
common embodiments aremagic numbers, often found for instance
in header fields, and checksums, typically used to verify data in-
tegrity. Format-specific dictionaries may help with magic numbers,
yet the fuzzer has to figure out where to place such values. Re-
searchers over the years have come up with a few approaches to
handle magic numbers and checksums in grey-box fuzzers.

Sub-instruction Profiling.While understanding how a large
amount of logic can be encoded in a single comparison is not trivial,
one could break multi-byte comparisons into single-byte [1] (or
even single-bit [22]) checks to better track progress when attempt-
ing to match constant values. LAF-Intel [1] and CompareCover-
age [20] are compiler extensions to produce binaries for such a
fuzzing. HonggFuzz [28] implements this technique for fuzzing
programs when the source is available, while AFL++ [16] can auto-
matically transform binaries during fuzzing. Steelix [21] resorts to
static analysis to filter out likely uninteresting comparisons from
profiling. While sub-instruction profiling is valuable to overcome
tests for magic numbers, it is ineffective however with checksums.

Taint Analysis.Dynamic taint analysis (DTA) [26] tracks when
and which input parts affect program instructions. Vuzzer [25]
uses DTA for checks on magic numbers in binary code, identified
as comparison instructions where an operand is input-dependent

https://github.com/andreafioraldi/weizz-fuzzer
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and the other is constant: Vuzzer places the constant value in
the input portion that propagates directly to the former operand.
Angora [10] brings two improvements: it identifies magic num-
bers that are not contiguous in the input with a multi-byte form
of DTA, and uses gradient descent to mutate tainted input bytes
efficiently. It however requires compiler transformations to enable
such mutations.

Symbolic Execution.DTA techniques can at best identify check-
sum tests, but not provide sufficient information to address them.
Several proposals (e.g., [23, 27, 31, 35]) use symbolic execution [6]
to identify and try to solve complex input constraints involved in
generic roadblocks. TaintScope [31] identifies possible checksums
with DTA, patches them away for the sake of fuzzing, and later
tries to repair inputs with symbolic execution. It requires the user
to provide specific seeds and is subject to false positives [23, 27].

T-Fuzz [23] makes a step further by removing the need for spe-
cific seeds and extends the set of disabled checks during fuzzing to
any sanity (non-critical) check that is hard to bypass for a fuzzer
but not essential for the computation. For instance, magic numbers
can be safely ignored to help fuzzing, while a check on the length
of a field should not be patched away. As in TaintScope, crashing
inputs are repaired using symbolic execution or manual analysis.

Driller [27] instead uses symbolic execution as an alternate
strategy to explore inputs, switching to it when fuzzing exhausts a
budget obtaining no coverage improvement. Similarly, Qsym [35]
builds on concolic execution implemented via dynamic binary in-
strumentation [13] to trade exhaustiveness for speed.

Approximate Analyses. A recent trend is to explore solutions
that approximately extract the information that DTA or symbolic
execution can bring, but faster.

RedQueen [5] builds on the observation that often input bytes
flow directly, or after simple encodings (e.g. swaps for endianness),
into instruction operands. This input-to-state (I2S) correspon-
dence can be used instead of DTA and symbolic execution to deal
with magic bytes, multi-byte compares, and checksums. RedQueen
approximates DTA by changing input bytes with random values
(colorization) to increase the entropy in the input and then looking
for matching patterns between comparisons operands and input
parts, which would suggest a dependency. When both operands of
a comparison change, but only for one there is an I2S relationship,
RedQueen deems it as a likely checksum test. It then patches the op-
eration, and later attempts to repair the input with educated guesses
consisting in mutations of the observed comparison operand values.
A topological sort of patches addresses nested checksums.

SLF [34] attemps a dependency analysis to deal with the genera-
tion of valid input seeds when nomeaningful test cases are available.
It starts from a small random input and flips individual bits in each
byte, executing the program to collect operand values involved in
comparisons. When consecutive input bytes affect the same set of
comparisons across the mutations, they are marked as part of the
same field. SLF then uses heuristics on observed values to classify
checks according to their relations with the exercised inputs: its
focus are identifying offsets, counts, and length of input fields, as
they can be difficult to reason about for symbolic executors.

In the context of concolic fuzzers, Eclipser [11] relaxes the path
constraints over each input byte. It runs a program multiple times

Table 1: Comparison with related approaches.

Fuzzer Binary Magic bytes Checksums Chunk-based Grammar-based Automatic
AFL++ ✓ ✓ ✗ ✗ ✗ ✓

Angora ✗ ✓ ✗ ✗ ✗ ✓

Eclipser ✓ ✓ ✗ ✗ ✗ ✓

RedQueen ✓ ✓ ✓ ✗ ✗ ✓

Steelix ✓ ✓ ✗ ✗ ✗ ✓

Nautilus ✗ ✓ ✗ ✗ ✓ ✗

Superion ✓ ✓ ✗ ✗ ✓ ✗

Grimoire ✓ ✓ ✓ ✗ ✓ ✓

AFLSmart ✓ ✓ ✗ ✓ ✗ ✗

Weizz ✓ ✓ ✓ ✓ ✗ ✓

by mutating individual input bytes to identify the affected branches.
Then it collects constraints resulting from them, considering how-
ever only linear and monotone relationships, as other constraint
types would likely require a full-fledged SMT solver. Eclipser then
selects one of the branches and flips its constraints to generate a
new input, mimicking dynamic symbolic execution [6].

2.3 Format-Aware Fuzzing
Classic CGF techniques lose part of their efficacy when dealing with
structured input formats found in files. As mutations happen on
bit-level representations of inputs, they can hardly bring the struc-
tural changes required to explore new compartments of the data
processing logic of an application. Format awareness can however
boost CGF: in the literature we can distinguish techniques targeting
grammar-based formats, where inputs comply to a language gram-
mar, and chunk-based ones, where inputs follow a tree hierarchy
with C structure-like data chunks to form individual nodes.

Grammar-Based Fuzzing. LangFuzz [17] generates valid in-
puts for a Javascript interpreter using a grammar, combining in
a black-box manner sample code fragments and test cases. Nau-
tilus [4] and Superion [30] are recent grey-box fuzzer proposals
that can test language interpreters without requiring a large corpus
of valid inputs or fragments, but only an ANTLR grammar file.

Grimoire [8] then removes the grammar specification require-
ment. Based on RedQueen, it identifies fragments from an initial
set of inputs that trigger new coverage, and strips them from parts
that would not cause a coverage loss. Grimoire notes information
for such gaps, and later attempts to recursively splice-in parts seen
in other positions, thus mimicking grammar combinations.

Chunk-Based Fuzzing. Spike [3] lets users describe the net-
work protocol in use for an application to improve black-box fuzzing.
Peach [15] generalizes this idea, applying format-aware mutations
on an initial set of valid inputs using a user-defined input specifi-
cation dubbed peach pit. As they are input-aware, some literature
calls such black-box fuzzers smart [24]. However a smart grey-box
variant may outperform them, as due to the lack of feedback (as in
explored code) they do not keep mutating interesting inputs.

AFLSmart [24] validates this speculation by adding smart (or
high-order) mutations to AFL that add, delete, and splice chunks in
an input. Using a peach pit, AFLSmart maintains a virtual struc-
ture of the current input, represented conceptually by a tree whose
internal nodes are chunks and leaves are attributes. Chunks are
characterized by initial and end position in the input, a format-
specific chunk type, and a list of children attributes and nested
chunks. An attribute is a field that can be mutated without altering
the structure. Chunk addition involves adding as sibling a chunk
taken from another input, with both having a parent node of the
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same type. Chunk deletion trims the corresponding input bytes.
Chunk splicing replaces data in a chunk using a chunk of the same
type from another input. As virtual structure construction is expen-
sive, AFLSmart defers smart mutations based on the time elapsed
since it last found a new path, as trying them over every input
would make AFLSmart fall behind classic grey-box fuzzing.

2.4 Discussion
Tables 1 depicts whereWeizz fits in the state of the art of CGF tech-
niquesmentioned in the previous sections. Modern general-purpose
CGF fuzzers (for which we choose a representative subset with the
first five entries) can handle magic bytes, but only RedQueen pro-
poses an effective solution for generic checksums. In the context of
grammar-based CGF fuzzers, Grimoire is currently the only fully
automatic (i.e., no format specification needed) solution, and can
handle both magic bytes and checksums thanks to the underlying
RedQueen infrastructure. WithWeizz we bring similar enhance-
ments to the context of chunk-based formats, proposing a scheme
that at the same time can handle magic bytes and checksums and
eliminates the need for a specification that characterizesAFLSmart.

3 METHODOLOGY
The fuzzing logic ofWeizz comprises two stages, depicted in Fig-
ure 1. Both stages pick from a shared queue made of inputs pro-
cessed by previous iterations of either stage. The surgical stage
identifies dependencies between an input and the comparisons
made in the program: it summarizes them by placing tags on input
bytes, and applies deterministic mutations to the sole bytes that
turn out to influence operands of comparison instructions. The
structure-aware stage extends the nondeterministic working of
AFL, leveraging previously assigned tags to infer the location of
fields and chunks in an input and mutate them. In the next sections
we will detail the inner workings of the two stages.

3.1 Surgical Stage
The surgical stage replaces the deterministic working of AFL, cap-
turing in the process dependency information for comparison in-
structions that is within immediate reach of a fuzzer.Weizz sum-
marizes it for the next stage by placing tags on input bytes, and uses
it also to identify I2S relationships (Section 2.2) and checksums.

The analysis is context-sensitive, that is, when analyzing a com-
parison we take into account its calling context [14]: the site of
the comparison is computed as the exclusive OR of the instruction
address with the word used to encode the calling context.

Weizz also maintains a global structure CI to keep track of
comparison instructions that the analysis of one or more inputs
indicated as possibly involved in checksum tests.

We will use the running example of Figure 2 to complement the
description of each component of the surgical stage. Before detailing
them individually, we provide the reader with an overview of the
workflow that characterizes this stage as an input enters it.

3.1.1 Overview. Given an input I picked from the queue, Weizz
attempts to determine the dependencies between every bit of I
taken individually and the comparison instructions in the program.

Procedure GetDeps builds two data structures, both indexed
by a hash function Sites for comparison sites. A comparison table

Figure 1: Two-stage architecture ofWeizz.

CT stores values for operands involved in observed instances of
comparison instructions at different sites. For such operands Deps
stores which bytes in the input can influence them.

Weizz then moves to analyzing the recorded information. For
each site, it iterates over each instance present in CT looking
for I2S dependencies (DetectI2S 7→R) and checksum information
(MarkChecksums 7→CI), and mutates bytes that can alter compar-
ison operands leveraging recorded values (FuzzOperands).

The stage then moves to tag construction, with each input byte
initially untagged. It sorts comparison sites according to when they
were first encountered and processes them in this order. Procedure
PlaceTags assigns a tag to each input byte taking into account I2S
relationships R, checksum information CI , the initially computed
dependencies Deps , and data associated with comparison sites CT .

Like other fuzzers [5, 31]Weizz forces checksums by patching
involved instructions as it detects one, postponing to the end of the
surgical stage the input repairing process FixChecksums required
to meet the unaltered checksum condition. To this end we use a
technique very similar to the one of RedQueen (Section 2.2).

The output of the surgical stage is an input annotated with
discovered tags and repaired to meet checksums, and enters the
queue ready for the structure-aware stage to pick it up.

The procedures for which we report the name with underlined
style are described only informally in this paper: the reader can
find their full pseudocode in our extended online technical report1.

3.1.2 Dependency Identification. A crucial feature that makes a
fuzzer effective is the ability to understand how mutations over the
input affect the execution of a program. In this paper we go down
the avenue of fast analyses to extract approximate dependency
information. We propose a technique that captures which input
bytes individually affect comparison instructions: it can capture I2S
facts like the technique of RedQueen, but also non-I2S relationships
that turn out to be equally important to assign tags to input bytes.

Algorithm 1 describes the GetDeps procedure used to this end.
Initially we run the program over the current input instrumenting
all comparison instructions. The output is a comparison table CT
that records the operands for the most recent |J | observations (in-
stances) of a comparison site. For each comparison site CT keeps
1https://arxiv.org/abs/1911.00621 (contents in §A).
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void parser(char* input , int len) {

unsigned short id, size , expected , ck = 0;

int i, offset = 0;

id = read_ushort(input + offset);

offset += sizeof(id);

size = read_ushort(input + offset);

offset += sizeof(size);

CMP_A: if (id >= 0xAAAA) exit (1);

CMP_B: if (size > len - 3* sizeof(short)) exit (1);

offset += size;

CMP_C: for (i = 0; i < offset; ++i)

ck ^= input[i] << (i % 8);

expected = read_ushort(input + offset);

CMP_D: if (ck != expected) exit (1);

// process id and data

}

(a)

(b)
Input format: [id] [size] [data] [checksum]
where: id, size, and checksum are 2-byte long

data is size-byte long

Bytes of seed:
[0E 00][02 00][41 41][36 0C]

Collected comparison instances:
CMPA CMPB CMPC CMPD

E, AAAA 2, 2 0, 6 C36, C36
1, 6
2, 6
3, 6
4, 6
5, 6
6, 6

(c)

Bytes of seed after flipping first bit:
[8E 00][02 00][41 41][36 0C]

Collected comparison instances:
CMPA CMPB CMPC CMPD

8E, AAAA 2, 2 0, 6 CB6, C36
1, 6
2, 6
3, 6
4, 6
5, 6
6, 6

(d)

Figure 2: Example for surgical stage: (a) code of function parser; (b) input format; comparison instances collected by Weizz
when running parser on (c) the initial seed and (d) on the seed after flipping its first bit (affected operands are marked in bold).

CT : Sites × J × {op1 , op2 } →V [cmp site instance & operand→ value]
Deps : Sites × J × {op1 , op2 } → A [cmp site inst. & operand→ array of |input| bools]
function GetDeps(I):
1 CT← RunInstr(I)
2 foreach b ∈ {0 ... len(I)-1} do
3 Deps(s, j, op)[b]← false ∀ (s, j, op) ∈ dom(CT)
4 foreach k ∈ {0 ... 7} do
5 CT′← RunInstr(BitFlip(I, b, k))
6 foreach (s, j, op) ∈ dom(CT) do
7 if Hits(CT, s) , Hits(CT′, s) then continue
8 Deps(s, j, op)[b]← Deps(s, j, op)[b] ∨ CT(s, j, op),CT′(s, j,

op)
9 return CT, Deps

Algorithm 1: Dependency identification step.

a timestamp for when RunInstr first observed it, and how many
times it encountered such site in the execution (Hits at line 7).

Weizz then attempts to determine which input bytes contribute
to operands at comparison sites, either directly or through derived
values. By altering bytes individually,Weizz looks for sites that see
their operands changed after a mutation. The algorithm iterates
over the bits of each byte, flipping them one at a time and obtaining
a CT ′ for an instrumented execution with the new input (line 5).
We mark the byte as a dependency for an operand of a comparison
site instance (line 8) if its b-th byte has changed in CT ′ w.r.t. CT .

Bit flips may however cause execution divergences, as some com-
parisons likely steer the program towards different paths (and when
such an input is interesting we add it to the queue, see Section 2.1).
Before updating dependency information, we check whether a com-
parison site s witnessed a different number of instances in the two
executions (line 7). This is a proxy to determine whether execution
did not diverge locally at the comparison site. We prefer a local pol-
icy over enforcing that all sites inCT andCT ′ see the same number
of instances. In fact for a mutated input some code portions can
see their comparison operands change (suggesting a dependency)
without incurring control-flow divergences, while elsewhere the
two executions may differ too much to look for correlations.

Example. We discuss a simple parsing code (Figure 2a) for a
custom input format characterized by three fields id, size,
and checksum, each expressed using 2 bytes, and a field data
of variable length encoded by the size field (Figure 2b).

Our parser takes as argument a pointer input to the incom-
ing bytes and their number len. It assumes the input buffer
will contain at least 6 bytes, which is the minimum size for a
valid input holding empty data. The code operates as follows:

(a) it reads the id and size fields from the buffer;
(b) it checks the validity of field id (label CMP_A);
(c) it checks whether the buffer contains at least 6+size

bytes to host data and the other fields (label CMP_B);
(d) it computes a checksum value iterating (label CMP_C)

over the bytes associated with id, size, and data;
(e) it reads the expected checksum from the buffer and

validates the one presently computed (label CMP_D).
Figure 2c shows the comparison instances collected by

Weizzwhen running the function parser over the initial seed.
For brevity we omit timestamps and hit counts and we assume
that the calling context is not relevant, so we can use compari-
son labels to identify sites. Multiple instances appear for site
CMP_C as it is executed multiple times within a loop.

Figure 2d shows the comparison instances collected after
flipping one bit in the first byte of the seed, with changes
highlighted in bold. Through these changes Weizz detects
that the first operand of both CMP_A and CMP_D was affected,
revealing dependencies between these two comparison sites
and the first input byte. Subsequent flips will lead to inputs
that reveal further dependencies:
• the 1st operand of CMP_A depends on the bytes of id;
• the 1st oper. of CMP_B depends on the bytes of size;
• the 2nd oper. of CMP_C depends on the 1st byte of size2;
• the 1st oper. of CMP_D depends on the bytes of both id
and data, as well as on the first byte of size, while the
2nd oper. is affected by the checksum field bytes;

3.1.3 Analysis of Comparison Site Instances. After constructing the
dependencies, Weizz starts processing the data recorded for up to
|J | instances of each comparison site. The first analysis is the detec-
2The dependency is exposed only when flipping the second least significant bit of
size, turning it into the value zero, as flipping other bits makes the size invalid and
aborts the execution prematurely at CMP_B.
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tion of I2S correspondences with DetectI2S. RedQueen explores
this concept to deal with roadblocks, based on the intuition that
parts of the input can flow directly into the program state in mem-
ory or registers used for comparisons (Section 2.2). For instance,
magic bytes found in headers are likely to take part in comparison
instructions as-is or after some simple encoding transformation [5].
We applyDetectI2S to every operand in a comparison site instance
and populate the R data structure with newly discovered I2S facts.

MarkChecksums involves the detection of checksumming se-
quences. Similarly to RedQueen, we mark a comparison instruction
as likely involved in a checksum if the following conditions hold:
(1) one operand is I2S and its size is at least 2 bytes; (2) the other
operand is not I2S and GetDeps revealed dependencies on some
input bytes; and (3)

∧
b (Deps(s, j, op1)[b], Deps(s, j, op2)[b]) = false,

that is, the sets of their byte dependencies are disjoint.
The intuition is that code compares the I2S operand (which we

speculate to be the expected value) against a value derived from
input bytes, and those bytes do not affect the I2S operand or we
would have a circular dependency. We choose a 2-byte minimum
size to reduce false positives. Like prior works we patch candidate
checksum tests to be always met, and defer to a later stage both the
identification of false positives and the input repairing required to
meet the condition(s) from the original unpatched program.

Finally, FuzzOperands replaces the deterministic mutations of
AFL with surgical byte substitutions driven by data seen at com-
parison sites. For each input byte, we determine every CT entry
(i.e., each operand of a comparison site instance) it influences. Then
we replace the byte and, depending on the operand size, its sur-
rounding ones using the value recorded for the other operand. The
replacement can use such value as-is, rotate it for endianness, incre-
ment/decrement it by one, perform zero/sign extension, or apply
ASCII encoding/decoding of digits. Each substitution yields an input
added to the queue if its execution reveals a coverage improvement.

Example. When analyzing the function parser, Weizz is able
to detect that the first operands of CMP_A and CMP_B and the
second operand of CMP_D are I2S. On the other hand, the second
operand of CMP_C and the first operand of CMP_D are not I2S,
although they depend on some of the input bytes.

Weizz marks CMP_D as a comparison instance likely in-
volved into a checksum since the three required conditions
hold: the second operand is I2S and has size 2, the first operand
is not I2S but depends on several input bytes, and the two
operands show dependencies on disjoint sets of bytes.

FuzzOperands attempts surgical substitutions based on
observed operand values: for instance, it can place as-is value
0xAAAA recorded at the comparison site CMP_A in the bytes for
the field id and trigger the enclosed exit(1) statement.

3.1.4 Tag Placement. Weizz succinctly describes dependency
information between input bytes and performed comparisons by
annotating such bytes with tags essential for the subsequent struc-
tural information inference. For the b-th input byte Taдs[b] keeps:
• id: (the address of) the comparison instruction chosen as
most significant among those b influences;
• ts: the timestamp of the id instruction when first met;

• parent: the comparison instruction that led Weizz to the
most recent tag assignment prior to Taдs[b];
• dependsOn: when b contains a checksum value, the com-
parison instruction for the innermost nested checksum that
verifies the integrity of b, if any;
• flags: stores the operand affected by b, if it is I2S, or if it is
part of a checksum field;
• numDeps: the number of input bytes that the operand in
flags depends on.

The tag assignment process relies on spatial and temporal local-
ity in how comparison instructions get executed. Weizz tries to
infer structural properties of the input based on the intuition that a
program typically uses distinct instructions to process structurally
distinct items. We can thus tag input bytes as related when they
reach one same comparison directly or through derived data. When
more candidates are found, we use temporal information to priori-
tize instructions with a lower timestamp, as input format validation
normally takes place in parsing code from the early stages of the
execution. As we explain next, we extend this scheme to account
for checksums and to reassign tags when heuristics spot a likely
better candidate than the current choice. Temporal information can
serve also as proxy for hierarchical relationships with parent tags.

Algorithm PlaceTags iterates over comparison sites sorted by
when first met in the execution, and attempts an inference for
each input byte. We apply it to individual op instruction operands
seen at a site s . If for the current byte b we find no dependency
among all recorded instances Deps(s, j,op), the cycle advances to
the next byte, otherwise we compute a numDeps candidate, i.e.,
the number n of input bytes that affect the instruction, computed
as n ←

∑
k (1 if

∨
j Deps(s, j,op)[k] else 0) where k indexes the

input length. If the byte is untagged we tag it with the current
instruction, otherwise we consider a reassignment. If the current
tag Taдs[b] does not come from a checksum test and n is smaller
than Taдs[b].numDeps , we reassign the tag as fewer dependencies
suggest the instruction may be more representative for the byte.

Whenwe find a comparison treating the byte as from a checksum
value, we always assign it as its tag. To populate thedependsOn field
we use a topological sort of the dependencies Deps over each input
byte, that is, we know when a byte part of a checksum value repre-
sents also a byte that some outer checksum(s) verify for integrity.
We later repair inputs starting from the innermost checksum, with
dependsOn pointing to the next comparison to process.

Example. Let us consider the seed of Figure 2c. The analysis
of dependencies leads to the following tag assignments:
• bytes from field id affect sites CMP_A and CMP_D: CMP_A is
chosen as tag as it is met first in the execution;
• bytes from size affect CMP_B, CMP_C, and CMP_D: CMP_B
is chosen as tag as it temporally precedes the other sites;
• bytes from data and checksum affect only CMP_D, which
becomes the id for their respective tags: however the tags
will differ in the flags field as those for checksum bytes
are marked as involved in a checksum field.

3.1.5 Checksum Validation & Input Repair. The last surgical step in-
volves checksum validation and input repair for checksums patched
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Figure 3: Field patterns identified byWeizz.

in the program during previous iterations. As the technique is con-
ceptually similar to the one of RedQueen, we discuss it briefly.

Algorithm FixChecksums uses topologically sorted tags that
were previously marked as involved in checksum fields. For each
tag, it first extracts the checksum computed by the program (i.e.,
the input-derived operand value of the comparison) and where in
the input the contents of the other operand (which is necessarily
I2S, see Section 3.1.3) are stored, then it replaces such bytes with
the expected value. It then disables the involved patch and runs the
program on the repaired input: if it handled the checksum correctly,
we will observe the same execution path as before, otherwise the
checksum was a false positive and we have to bail.

At the end of the processWeizz re-applies patches that were not
a false positive: this will benefit both the second stage and future
surgical iterations over other inputs. It then also applies patches for
checksums newly discovered byMarkChecksums in the current
surgical stage, so when it will analyze again the input (or similar
ones from FuzzOperands) it will be able to overcome them.

3.2 Structure-Aware Stage
The second stage of Weizz generates new inputs via nondeter-
ministic mutations that can build on tags assigned in the surgical
stage. Like in the AFL realm, the number of derived inputs de-
pends on an energy score that the power scheduler of AFL assigns
to the original input [24]. Each input is the result of a variable
number (1 to 256) of stacked mutations, withWeizz picking non-
deterministically at each step a havoc, a field, or a chunk mutation
scheme. The choice of keeping the havoc mutations ofAFL is shared
with previous chunk-oriented works [24], as combining them with
structure-aware mutations improves the scalability of the approach.

Field mutations build on tags assigned in the surgical stage to
selectively alter bytes that together likely represent a single piece
of information. Chunk mutations target instead higher-level, larger
structural transformations driven by tags.

As our field and chunk inference strategy is not sound, especially
compared to manually written specifications, we giveWeizz leeway
in the identification process. Weizz never reconstructs the input
structure in full, but only identifies individual fields or chunks
in a nondeterministic manner when performing a mutation. The
downside of this choice is that Weizz may repeat work or make
conflicting choices among mutations, as it does not keep track of
past choices. On the bright side,Weizz does not commit to possibly
erroneous choices when applying one of its heuristics: this limits
their impact to the subsequent mutations, and grants more leeway
to the overall fuzzing process in exploring alternate scenarios.

function FieldMutation(Tags, I):
1 b← pick u.a.r. from {0 ... len(I)}
2 for i ∈ {b ... len(I)-1} do
3 if Tags[i].id==0 then continue
4 start← GoLeftWhileSameTag(Tags, i)
5 with probab. PrI 2S or if !I2S(Tags[start]) then
6 end← FindFieldEnd(Tags, start, 0)
7 I←Mutate(I, start, end); break
8 return I

Algorithm 2: Field identification and mutation.

We will describe next how we use input tags to identify fields
and chunks and the mutations we apply. At the end of the process,
we execute the program over the input generated from the stacked
mutations, looking for crashes and coverage improvements. We
promptly repair inputs that cause a new crash, while the others
undergo repair when they eventually enter the surgical stage.

3.2.1 Fields. Field identification is a heuristic process designed
around prominent patterns that Weizz should identify. The first
one is straightforward and sees a program checking a field using a
single comparison instruction. We believe it to be the most common
in real-world software. The second one instead sees a program
comparing every byte in a field using a different instruction, as in
the following fragment from the lodepng library:

unsigned char lodepng_chunk_type_equals(const unsigned char*

chunk , const char* type) {

if (strlen(type) != 4) return 0;

return (chunk [4]== type [0] && chunk [5]== type [1] && chunk [6]==

type [2] && chunk [7]== type [3]); }

which checks each byte in the input string chunk using a different
comparison statement. Such code for instance often appears in
program to account for differences in endianness. The two patterns
may be combined to form a third one, as in the bottom part of
Figure 3, that we consider in our technique as well.

Let us present how Weizz captures the patterns instantiated in
Figure 3. For the first pattern, since a single instruction checks all
the bytes in the field, we expect to see the corresponding input
bytes marked with the same tag. For the second pattern, we expect
instead to have consecutive bytes marked with different tags but
consecutive associated timestamps, as no other comparison instruc-
tion intervenes. In the figure we can see a field made of bytes with
tag ids {A, E, G, B} having respective timestamps {5, 6, 7, 8}. The
third pattern implies having (two or more) subsequences made
internally of the same tag, with the tag changing across them but
with a timestamp difference of one unit only.

Procedure FieldMutation (Algorithm 2) looks nondetermin-
istically for a field by choosing a random position b in the input.
If there is no tag for the current byte, the cursor advances until it
reaches a tagged byte (line 3). On the contrary, if the byte is tagged
Weizz checks whether it is the first byte in the candidate field or
there are any preceding bytes with the same tag, retracting to the
leftmost in the latter case (line 4). With the start of the field now
found,Weizz evaluates whether to mutate it: if the initial byte is
I2S, the mutation happens only with a probability as such a byte
could represent a magic number. Altering a magic number would
lead to program paths handling invalid inputs, which in general are
less appealing for a fuzzer. The extent of the mutation is decided by
the helper procedure FindFieldEnd, which looks for sequences of
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struct { // lines

int type; // 1-3

int x, y; // 2-3

int cksm; // 4-5

}

(a)

struct {

int type; // 1-3

int cksm; // 4-5

int x, y; // 8-9

}

(b)

struct {

int type; // 1-3

int x, y; // 2-3

int cksm; // 4-5

char data [64]; // 7-9

} (c)
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Figure 4: Examples of chunks thatWeizz can look for.

tagged bytes that meet one of the three patterns discussed above.
FieldMutation then alters the field by choosing one among the
twelve AFL length-preserving havoc transformations over its bytes.

3.2.2 Chunks. Weizz heuristically locates plausible boundaries for
chunks in the input sequence, then it applies higher-ordermutations
to candidate chunks. As running example we discuss variants of a
structure representative of many chunks found in binary formats.

The first variant (Figure 4a) has four fields: a type assigned with
some well-known constant, two data fields x and y, and a cksm
value for integrity checking. Let us consider a program that first
computes the checksum of the structure and compares it against
the namesake field, then it verifies the type and x fields in this
order, executes possibly unrelated comparisons (i.e., they do not
alter tags for the structure bytes), and later on makes a comparison
depending on y. For the sake of simplicity we assume that field
processing matches the first pattern seen in the previous section
(i.e., one comparison per field). The output of PlaceTags will be
coherent with the graphical representation of Figure 4d.

We now describe how our technique is able to identify the bound-
aries of this chunk using tags and their timestamps. Similarly as
with fields, we pick a random position b within the input and ana-
lyze the preceding bytes, retracting the cursor as long as the tag
stays the same. For any b initially falling within the 4 bytes of type,
Weizz finds the same start index for the chunk. To find the end
position it resorts to FindChunkEnd (Algorithm 3).

The procedure initially recognizes the 4 bytes of type (line 1),
then recursively looks for adjacent fields when their timestamps are
higher than the one for the current field (lines 2-3). This recursive
step reveals fields x and y. The cksm field has a lower timestamp
value (as the program checked it before analyzing type), but lines 4-
5 can include it in the chunk as they inspect parent data. The parent
is the comparison from the tag assignment prior to the current one,
and the first activation of FindChunkEnd will see that the tag of
the first byte of cksm matches the parent for the tag for type.

To explain lines 6-9 in Algorithm 3, let us consider variants of the
structure that exercise them. In Figure 4b cksm comes before type,
and in this case the algorithm would skip over lines 2-3 without
incrementing end , thus missing x and y. Lines 8-9 can add to the
chunk bytes from adjacent fields as long as they have increasing
timestamps with respect to the one from the tag for the k-th byte
(the first byte in type in this case). In Figure 4c we added an array
data of 64 bytes to the structure: it may happen that Weizz leaves
binary blobs untagged if the program does not make comparisons
over them or some derived values. Line 7 can add such sequences to
a chunk, extending end to the new end ′ value depicted in Figure 4d.

function FindChunkEnd(Tags, k):
1 end← GoRightWhileSameTag(Tags, k)
2 while Tags[end+1].ts >= Tags[k].ts do
3 end← FindChunkEnd(Tags, end+1)
4 while Tags[end+1].id == Tags[k].parent do
5 end← end +1
6 with probability Prextend do
7 while Tags[end+1].id == 0 do end← end +1
8 while Tags[end+1].ts >= Tags[k].ts do
9 end← FindChunkEnd(Tags, end+1)

10 return end

Algorithm 3: Boundary identification for chunks.

With FindChunkEnd we propose an inference scheme inspired
by the layout of popular formats. The first field in a chunk is typi-
cally also the one that the program analyzes first, and we leverage
this fact to speculate where a chunk may start. If the program veri-
fies a checksum before accessing even that field, we link it to the
chunk using parent information, otherwise “later” checksums rep-
resent a normal data field. Lines 7-9 enlarge chunks to account for
different layouts and tag orderings, but only with a probability to
avoid excessive extension. The algorithm can also capture partially
tagged blobs through the recursive steps it can take.

Observe however that in some formats there might be dominant
chunk types, and choosing the initial position randomly would
reveal a chunk of non-dominant type with a smaller probability. We
devise an alternate heuristic that handles this scenario better: it ran-
domly picks one of the comparison instructions appearing in tags,
assembles non-overlapping chunks with FindChunkEnd starting
at a byte tagged by such an instruction, and picks one among the
built chunks. As Weizz is unaware of the format characteristics,
we choose between the two heuristics with a probability.

For the current chunk selection,Weizz attempts one of the fol-
lowing higher-order mutations (Section 2.3):
• Addition. It adds a chunk from another input to the chunk
that encloses the current one. Weizz picks a tagged input
I′ from the queue and looks for chunks in it starting with
bytes tagged with the same parent field of the leading bytes
in the current chunk. It picks one randomly and extends
the current input by adding its associated bytes before or
after the current chunk. The parent tag acts as proxy for the
nesting information available instead to AFLSmart.
• Deletion. It removes the input bytes for the chunk.
• Splicing. It picks a similar chunk from another input to
replace the current one. It scans that input looking for chunks
startingwith the same tag (AFLSmart uses type information)
of the current, randomly picks one, and substitutes the bytes.

3.2.3 Discussion. We can now elaborate on why, in order to back
the field and chunk mutations just described, we cannot rely on the
dependency identification techniques of RedQueen or SLF.

Let us assume RedQueen colors an input with a number of A
bytes and initially logs a cmp A, B operation. RedQueen would
attempt to replace each occurrence of A with B and validate it by
looking for coverage improvements when running the program over
the new input, this time with logging disabled. This strategy works
well if the goal are only I2S replacements, but for field identification
there are two problems: (i) with multiple B bytes in the input, we
cannot determine which one makes a field for the comparison,
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and (ii) if B is already in another input in the queue, no coverage
improvement comes from the replacement, and RedQueen misses
a direct dependency for the current input. Our structural mutations
require tracking comparisons all along for I2S and non-I2S facts.

SLF can identify dependencies similarly to our GetDeps, but
recognizes only specialized input portions—that we can consider
fields—based on how the program treats them. SLF supports three
categories of program checks and can mutate portions e.g. by repli-
cating those involved in a count check (§2.2). While Weizz may
do that through chunk addition, it also mutates fields—and whole
chunks—that are not treated by SLF.

4 IMPLEMENTATION
We implemented our ideas on top of AFL 2.52b and QEMU 3.1.0
for x86-64 Linux targets. For branch coverage and comparison
tables we use a shadow call stack to compute context-sensitive
information [14], which may let a fuzzer explore programs more
pervasively [10]. We index the coverage map using the source and
destination basic block addresses and a hash of the call stack.

Natural candidates for populating comparison tables are cmp
and sub instructions. We store up to |J |=256 entries per site. Like
RedQueen we also record call instructions that may involve com-
parator functions: we check whether the locations for the first
two arguments contain valid pointers, and dump 32 bytes for each
operand. Treating such calls as operands (think of functions that
behave like memcmp) may improve the coverage, especially when
the fuzzer is configured not to instrument external libraries.

An important optimization involves deferring surgical fuzzing
with a timeout-based mechanism, letting inputs jump to the second
stage with a decreasing probability if an interesting input was
discovered in the current window (sized as 50 seconds).

Note that untagged inputs can only undergo havoc mutations
in the second stage: we thus introduce derived tags, which are an
educated guess on the actual tag based on tags seen in a similar
input. Derived tags speed up our fuzzer, and actual tags replace
them when the input eventually enters the surgical stage.

Two scenarios can give rise to derived tags. One case happens
when starting from an input I the surgical mutations of Fuzz-
Operands(I) produce one or more inputs I’ that improve cover-
age and are added to the queue. Once PlaceTags has tagged I, we
copy such tags to I’ (structurally analogous to I, as FuzzOperands
operates with “local” mutations) and mark them as derived.

Similarly, a tagged input I1 can undergo high-order mutations
that borrow bytes from a tagged input I2, namely addition or splic-
ing. In this case the added/spliced bytes of the mutated I1’ coming
from I2 get the same tags seen in I2, while the remaining bytes keep
the tags seen for them in I1.

5 EVALUATION
In our experiments we tackle the following research questions:
• RQ 1. How does Weizz compare to state-of-the-art fuzzers
on targets that process chunk-based formats?
• RQ 2. CanWeizz identify new bugs?
• RQ 3. How do tags relate to the actual input formats? And
what is the role of structural mutations and roadblock by-
passing in the observed improvements?
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Figure 5: Basic block coverage over time (5 hours).

Benchmarks. We consider the following programs (version,
input format):wavpack (5.1.0,WAV), decompress (2.3.1, JP2),ffmpeg
(4.2.1, AVI), libpng (1.6.37, PNG), readelf (2.3.0, ELF), djpeg (5db6a68,
JPEG), objdump (2.31.51, ELF), mpg321 (MP3, 0.3.2), oggdec (1.4.0,
OGG), tcpdump (4.9.2, PCAP), and gif2rgb (5.2.1, GIF). The first 6
programs were considered in past evaluation of AFLSmart, with
a format specification available for it. The last 8 programs are
commonly used in evaluations of general-purpose fuzzers.

Experimental setup. We ran our tests on a server with two
Intel Xeon E5-4610v2@2.30GHz CPUs and 256 GB of RAM, running
Debian 9.2. We measured the cumulative basic block coverage of
different fuzzers from running an application over the entire set of
inputs generated by each fuzzer. We repeated each experiment 5
times, plotting the median value in the charts. For the second stage
ofWeizz we set Prf ield = Prchunk = 1/15 (Figure 1), similarly to
the probability of applying smart mutations in AFLSmart in [24].

5.1 RQ1: Chunk-Based Formats
We compare Weizz against the state-of-the-art solution for chunk-
based formats AFLSmart, which applies higher-order mutations
over a virtual input structure (Section 2.3). We then take into ac-
count general-purpose fuzzers that previous studies [11, 24] suggest
as being still quite effective in practice on this type of programs.

5.1.1 AFLSmart. For AFLSmart we used its release 604c40c and
the peach pits written by its authors for the virtual input structures
involved. We measured the code coverage achieved by: (a) AFLS-
mart with stacked mutations but without deterministic stages as
suggested in its documentation, (b) Weizz in its standard config-
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uration, and (c) a variantWeizz† with FuzzOperands, checksum
patching, and input repairing disabled. Weizz† lets us focus on the
effects of tag-based mutations, giving up on roadblock bypassing
capabilities missing in AFLSmart. We provide (a) and (c) with a dic-
tionary of tokens for format under analysis like in past evaluations
of AFLSmart. We use AFL test cases as seeds, except for wavpack
and ffmpeg where we use minimal syntactically valid files [9].

Figure 5 plots the median basic block coverage after 5 hours.
Compared toAFLSmart,Weizz brings appreciably higher coverage
on 3 out of 6 subjects (readelf, libpng, ffmpeg), slightly higher on
wavpack, comparable on decompress, and slightly worse on djpeg.
To understand these results, we first consider whereWeizz† lies,
and then discuss the benefits from the additional features ofWeizz.

Higher coverage inWeizz† comes from the different approach
to structural mutations. AFLSmart follows a format specification,
while we rely on how a program handles the input bytes:Weizz†
can reveal behaviors that characterize the actual implementation
and that may not be necessarily anticipated by the specification.
The first implication is that Weizz† mutates only portions that
the program has already processed in the execution, as tags derive
from executed comparisons. The second is that imprecision in in-

ferring structural facts may actually benefitWeizz†. The authors
of AFLSmart acknowledge how relaxed specifications can expose
imprecise implementations [24]: we will return to this in Section 6.

Weizz† is a better alternative than AFLSmart for readelf, libpng,
and ffmpeg. When we consider the techniques disabled in Weizz†,
Weizz brings higher coverage for two reasons. I2S facts helpWeizz
replace magic bytes only in the right spots compared to dictionaries,
which can also be incomplete. This turns out important also inmulti-
format applications like ffmpeg. Then, checksum bypassing allows
it to generate valid inputs for programs that check data integrity,
such as libpng that computes CRC-32 values over data.

We also consider the collected crashes, found only for wavpack
and ffmpeg. In the first case, the three fuzzers found the same bugs.
For ffmpeg,Weizz found a bug from a division by zero in a code
section handling multiple formats: we reported the bug and its
developers promptly fixed it. The I2S-related features of Weizz
were very effective for generating inputs that deviate significantly
from the initial seed, e.g., mutating an AVI file into an MPEG-4 one.
In Section 5.2 we back this claim with one case study.

5.1.2 Grey-Box Fuzzers. We now compare Weizz against 8 popu-
lar applications handling chunk-based formats, heavily tested by
the community [2], and used in past evaluations of state-of-the-art
fuzzers [5, 21, 24, 25]. We tested the following fuzzers: (a) AFL 2.53b
in QEMU mode, (b) AFL++ 2.54c in QEMU mode enabling the Com-
pareCoverage feature, and (c) Eclipser with its latest release when
we ran our tests (commit 8a00591) and its default configuration,
aligned with KLEE. Note that this is only one of the possible con-
figurations of Eclipser, in particular this one is limited to a small
file length.

As Weizz targets binary programs, we rule out fuzzers like An-
gora that require source instrumentation. For sub-instruction pro-
filing, since Steelix is not publicly available, we choose AFL++
instead.

While considering RedQueen could be tantalizing, its hardware-
assisted instrumentation could make an unfair edge as here we
compare coverage of QEMU-based proposals, as the different over-
heads may mask why a given methodology reaches some coverage.
We attempt an experiment in Section 5.3 by configuringWeizz to
resemble its features, and compare the two techniques in Section 6.

As the competitors we consider have no provisions for structural
mutations, we opted for a larger budget of 24 hours in order to
see whether they could recover in terms of coverage over time.
Consistently with previous evaluations [11], we use as initial seed a
string made of the ASCII character "0" repeated 72 times. However,
for libpng and tcpdump we fall back to a valid initial input test
(not_kitty.png from AFL for libpng and a PCAP of a few seconds
for tcpdump) as no fuzzer, excluding Weizz on libpng, achieved
significant coverage with artificial seeds. We also provide AFL with
format-specific dictionaries to aid it with magic numbers.

Figure 6 plots the median basic block coverage over time.Weizz
on 5 out 8 targets (libpng, oggdec, tcpdump, objdump and readelf)
achieves significantly higher code coverage than other fuzzers. The
first three process formats with checksum fields that onlyWeizz
repairs, although Eclipser appears to catch up over time for oggdec.
Structural mutation capabilities combined with this factor may
explain the gap between Weizz and other fuzzers. For objdump
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and readelf, we may speculate I2S facts are boosting the work of
Weizz by the way RedQueen outperforms other fuzzers over them
in its evaluation [5] (in objdump logging function arguments was
crucial [5]). On mpg321 and gif2rgb, AFL-based fuzzers perform
very similarly, with a large margin over Eclipser, confirming that
standard AFL mutations can be effective on some chunk-based
formats. Finally, Weizz leads for djpeg but the other fuzzers are
not too far from it. Overall, AFL is interestingly the best alternative
to Weizz for djpeg, libpng, and gif2rgb. When taking into account
crashes, Weizz and AFL++ generated the same crashing inputs for
mpg321, while onlyWeizz revealed a crash for objdump.

5.2 RQ2: New Bugs
To explore its effectiveness, we ranWeizz for 36 hours on several
real-world targets, including the processing of inputs not strictly
adhering to the chunk-based paradigm. Weizz revealed 16 bugs in
9 popular, well-tested applications: objdump, CUPS (2 bugs), libmi-
rage (2), dmg2img (3), jbig2enc, mpg321, ffmpeg (3 in libavformat,
1 in libavcodec), sleuthkit, and libvmdk. Overall 6 bugs are NULL
pointer dereferences (CWE-476), 1 involves an unaligned realloc
(CWE-761), 2 can lead to buffer overflows (CWE-122), 2 cause an
out-of-bounds read (CWE-125), 2 a division by zero (CWE-369), and
3 an integer overflow (CWE-190). We detail two interesting ones.

CUPS.While the HTML interface of the Common UNIX Printing
System is not chunk-oriented, we explored ifWeizz could mutate
the HTTP requests enclosing it. Weizz crafted a request that led
CUPS to reallocate a user-controlled buffer, paving the road to a
House of Spirit attack [7]. The key to finding the bug was to have
FuzzOperands replace some current input bytes with I2S facts
(’Accept-Language’ logged as operand in a call to _cups_strcase
cmp), thus materializing a valid request field that chunk mutations
later duplicated. Apple confirmed and fixed the bug in CUPS v2.3b8.

libMirage.We found a critical bug in a library providing uniform
access to CD-ROM image formats. An attacker can generate a heap-
based buffer overflow that in turn may corrupt allocator metadata,
and even grant root access as the CDEmu daemon using it runs
with root privileges on most Linux systems. We used an ISO image
as initial seed: Weizz exposed the bug in the NRG image parser,
demonstrating how it can deviate even considerably among input
formats based exclusively on how the code handles input bytes.

5.3 RQ3: Understanding the Impact of Tags
Programs can differ significantly in how they process input bytes
of different formats, yet we find it interesting to explore whyWeizz
can be effective on a given target. We discuss two case studies
where we seek how tags can assist field and chunk identification in
libpng, and we see how smart mutations and roadblocks bypassing
are essential for ffmpeg, but either alone is not enough for efficacy.

TagAccuracy. Figure 7 shows the raw bytes of the seed not_kit
ty.png for libpng. It starts with a 8-byte magic number (in orange)
followed by 5 chunks, each characterized by four fields: length (4
bytes, in green), type (4 bytes, red), data (heterogeneous, as with
PNG_CHUNK_IHDR data in yellow), and a CRC-32 checksum (4 bytes,
in blue). The last chunk has no data as it marks the file end.

To understand the field identification process, we analyzed the
tags from the surgical stage for the test case. Starting from the first

 

[89  50  4E  47  0D  0A  1A  0A][00][00  00  0D][49  48  44  52]
[00  00  00  20  00  00  00  20  08  03  00  00  00  44  A4  8A 
 C6][00][00  00  19][74  45  58  74][53  6F  66  74  77  61  72 
 65][00  41  64  6F  62  65  20  49][6D  61  67  65  52  65  61 
 64  79][71  C9  65  3C][00][00  00  0F][50  4C  54  45][66  CC 
 CC][FF  FF  FF  00  00  00  33  99  66  99  FF  CC  3E  4C  AF 
 15][00][00  00  61][49  44  41  54] 78  DA  DC  93  31  0E  C0 
 20  0C  03  93  98  FF  BF  B9  34  14  09  D4  3A  61  61  A0 
 37  B0  F8  24  0B  0B [44  13  44  D5  02  6E  C1  0A  47  CC 
 05  A1] E0 [A7][82  6F  17  08  CF][BA][54  A8  21  30  1A  6F 
 01][F0  93][56  B4  3C  10] 7A  4D  20  4C][F9  B7][30  E4  44 
 48  96  44  22  4C][43  EE  A9  38  F6  C9  D5  9B  51  6C  E5 
 F3  26  5C][02  0C  00][D2  66  03  35][B0  D7  CB  9A] 00  00 
 00 00   49  45  4E  44  AE  42  60  82     
 

[]: field delimiters from WEIZZ   HEX: checksum field from WEIZZ
 

PNG fields: PNG_SIGNATURE LENGTH TYPE PNG_CHUNK_IHDR CRC-32     
 

IDAT DATA PNG_CHUNK_TEXT LABEL PNG_CHUNK_TEXT DATA PNG_CHUNK_PLTE

Figure 7: Fields identified in the not_kitty.png test case.

byte, we apply FindFieldEnd repeatedly at every position after the
end of the last found field. In Figure 7 we delimit each found field
in square brackets, and underline bytes that Weizz deems from
checksum fields.Weizz identifies correct boundaries with a few ex-
ceptions. The last three fields in the file are not revealed, as libpng
never accesses that chunk. In some cases a data field is merged
with the adjacent checksum value. Initially libpng does not make
comparisons over the data bytes, but first computes their checksum
and verifies it against the expected value with a comparison that
will characterize also the data bytes (for the data-flow dependency).
Dependency analysis on the operands (Section 3.1.3) however iden-
tifies the checksum correctly for FixChecksums, and once the input
gets repaired and enters the surgical stage again, libpng will execute
new comparisons over the data bytes, andWeizz can identify the
data field correctly tagging them with such instructions. Finally,
the grey parts (IDAT DATA) represent a binary blob fragmented into
distinct fields byWeizz with gaps from untagged bytes, as not all
the routines that process them make comparisons over the blob.

Analyzing chunk boundaries is more challenging, as FindField-
End is sensitive to the initial position. For instance, when starting
the analysis at the 8-byte magic number it correctly identifies the
entire test case as one chunk, or by starting at a length field it may
capture all the other fields for that chunk3. However, when starting
at a type field it may build an incomplete chunk. Nonetheless, even
under imprecise boundary detection Weizz can still make valuable
mutations for two reasons. First, mutations that borrow bytes from
other test cases check the same leading tag, and this yields for in-
stance splicing of likely “compatible” incomplete chunks. Second,
this may be beneficial to exercise not so well-tested corner cases or
shared parsing code: we will return to it in Section 6. For libpng we
achieved better coverage than other fuzzers, including AFLSmart.

StructuralMutations vs. Roadblocks. To dig deeper in the ex-
periments of Section 5.1, one question could be: how much coverage
improvement is due to structural mutations or roadblock bypassing?
We consider ffmpeg as case study: in addition toWeizz andWeizz†
that lacks roadblock bypassing techniques but leverages structural
mutations, we introduce a variant Weizz‡ that can use I2S facts to
bypass roadblocks like RedQueen but lacks tag-based mutations. In
Figure 8 we report code coverage and input queue size after a run
of 5 hours4. When taken individually, tag-based mutations seem to
3Depending on the starting byte, it could miss some of the first bytes.
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Figure 8: Analysis of ffmpeg with three variants ofWeizz.

have an edge over roadblock bypass techniques (+17% coverage).
This may seem surprising as ffmpeg supports multiple formats and
I2S facts can speed up the identification of their magic numbers, un-
locking several program paths. Structural mutations however affect
code coverage more appreciably on ffmpeg. When combining both
features inWeizz, we get the best result with 34% more coverage
than in Weizz‡. Interestingly, Weizz† shows a larger queue size
thanWeizz: this means that althoughWeizz explores more code
portions,Weizz† covers some of the branches more exhaustively,
i.e., it is able to cover more hit count buckets for some branches.

6 CONCLUDING REMARKS
Weizz introduces novel ideas for computing byte dependency in-
formation to simultaneously overcome roadblocks and back fully
automatic fuzzing of chunk-based binary formats. The experimen-
tal results seem promising: we are competitive with human-assisted
proposals, and we found new bugs in well-tested software.

Our approach has two practical advantages: fuzzers already at-
tempt bitflips in deterministic stages, and instrumenting compar-
isons is becoming a common practice for roadblocks. We empower
such analyses to better characterize the program behavior while
fuzzing, enabling the tag assignment mechanism. Prior proposals
do not offer sufficient information to this end: even for RedQueen,
its colorization [5] identifies I2S portions of an input (crucial for
roadblocks) but cannot reveal dependencies for non-I2S bytes.

A downside is that bit flipping can get costly over large inputs.
However, equally important is the time the program takes to execute
one test case. In our experiments Weizz applied the surgical stage
to inputs up to 3K bytes, with comparable or better coverage than
the other fuzzers we considered. We leave to future work using
forms of bit-level DTA [32, 33] as an alternative for “costly” inputs.

Weizz may miss dependencies for comparisons made with unin-
strumented instructions. This can happen in optimized code that
uses arithmetic and logical operations to set CPU flags for a branch
decision. We may resort to intra-procedural static analysis to spot
them [25] (as logging all of them blindly can be expensive) but
currently opted for tolerating some inconsistencies in the heuristics
we use, for instance skipping over one byte in FindChunkEnd
when the remaining bytes would match the expected patterns.

Our structure-aware stage, in addition to not requiring a specifi-
cation, is different than AFLSmart also in where we apply high-
order operators. AFLSmart mutates chunks in a black-box fashion,
that is, it has no evidence whether the program manipulated the
involved input portion during the execution.Weizz chooses among
4AFLSmart shown as reference—queues are uncomparable (no context sensitivity).

chunks that the executed comparison instructions indirectly reveal.
We find hard to argue which strategy is superior in the general case.
Another important difference is that, as our inference schemes are
not sound, we may mutate inputs in odd ways, for instance replac-
ing only portions of a chunk with a comparable counterpart from
another input. In theAFLSmart paper the authors explain that they
could find some bugs only thanks to a relaxed specification [24]. We
find this consistent with the Grimoire experience with grammars,
where paths outside the specification revealed coding mistakes [8].

As future work we plan to consider a larger pool of subjects, and
shed more light on the impact of structure-aware techniques: how
they impact coverage, which are the most effective for a program,
and how often the mutated inputs do not meet the specification.
Answering these questions seems far from trivial due to the high
throughput and entropy of fuzzing. There is also room to extend
chunk inference with new heuristics or make the current ones more
efficient. For instance, we are exploring with promising results a
variant where we locate the beginning of a chunk at a field made
of I2S bytes, possibly indicative of a magic value for its type.
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A APPENDIX
A.1 Roadblocks from lodepng
As an example of roadblocks found in real-world software, the
following excerpt from lodepng image encoder and decoder looks
for the presence of the magic string IHDIR denoting the namesake
PNG chunk type and checks the integrity of its data against a CRC-
32 checksum:

if (! lodepng_chunk_type_equals(in + 8, "IHDR")) {

/*error: it doesn 't start with a IHDR chunk!*/

CERROR_RETURN_ERROR(state ->error , 29);

}

...

unsigned CRC = lodepng_read32bitInt (&in[29]);

unsigned checksum = lodepng_crc32 (&in[12], 17);

if (CRC != checksum) {

/* invalid CRC*/

CERROR_RETURN_ERROR(state ->error , 57);

}

A.2 Additional Algorithms
Algorithm 4 formalizes the workflow of the surgical stage depicted
in Figure 1. With Figure 9 we then provide our readers with a
glossary of the domain and data structure definitions used in the
algorithmic descriptions of the techniques we propose.

Tag Placement. Algorithm 5 provides pseudocode for the PlaceTags
procedure, while we refer the reader to Section 3.1.4 for a discussion
of its main steps. An interesting detail presented here is related to
the condition n′ > 4 when computing the reassign flag. This results
from experimental observations, with 4 being the most common
field size in the formats we analyzed. Hence, Weizz will choose
as characterizing instruction for a byte the first comparison that
depends on no more than 4 bytes, ruling out possibly “shorter” later
comparisons as they may be accidental.

Checksum Handling. Due to space limitations in the paper we have
provided our readers only with the intuition of how our checksum
handling schemes works. We detail its main steps in the following.

As we said the last conceptual step of the surgical stage involves
checksum validation and input repair with respect to checksums
patched in the program during previous surgical iterations. In the
process Weizz also discards false positives among such checksums.

FixChecksums (Algorithm 6) filters tags marked as involved in
checksum fields for which a patch is active, and processes them in
the order described in the previous section.Weizz initially executes
the patched program, obtaining a comparison table CT and the hash
h of the coverage map as execution path footprint.

Then it iterates over each filtered tag as follows. It first extracts
the input-derived operand value of the comparison instruction (i.e.,
the checksum computed by the program) and where in the input
the contents of the other operand (which is I2S, see Section 3.1.3)
are located, then it replaces the input bytes with the expected value
(lines 4-5). Weizz makes a new instrumented execution over the
repaired input, disabling the patch. If it handled the checksum
correctly, the resulting hash h′ will be identical to h implying no
execution divergence happened, otherwise the checksum is a false
positive and we have to bail.

After processing all the tags, we may still have patches left in
the program for checksums not reflected by tags.Weizzmay in fact

J : {0 ... 28 − 1} Index of cmp instance
Sites : Addr × Stack → {0 ... 216-1} Site ID (cmp addr ⊕ calling context)
CT : Sites × J × {op1 , op2 } → V cmp site instance & operand→ value
Deps : Sites × J × {op1 , op2 } → A cmp site instance & operand→ array of

len(input) booleans
R : Sites × J → InputToStateInf o cmp site instance→ I2S info
CI : Addr → ChecksumInf o cmp addr→ checksum info

Figure 9: Glossary and domain definitions.

function SurgicalFuzzing(I):
1 CT, Deps← GetDeps(I)
2 foreach s ∈ Sites, j ∈ J do
3 R(s, j)← DetectI2S(Deps, CT, s, j, I)
4 CI←MarkChecksums(R(s, j), CI)
5 FuzzOperands(I, CI, Deps, s, j)
6 Tags← ⟨0 ... 0⟩ with |Tags | = len(I)
7 o← TopologicalSort(CI, Deps)
8 foreach s: SortSitesByExecOrder(CT) do
9 Tags← PlaceTags(Tags, Deps, s, CT, CI, R, o, I)

10 I, CI, fixOk← FixChecksums(CI, I, Tags, o)
11 CI← PatchAllChecksums(CI)
12 return I, Tags, fixOk

Algorithm 4: Surgical stage ofWeizz.

function PlaceTags(Tags, Deps, s, CT, CI, R, o, I):
1 for b ∈ {0 ... len(I)-1}, op ∈ {op1 , op2 } do
2 if ¬

∨
j Deps(s, j, op)[b] then continue

3 n←
∑
k (1 if

∨
j Deps(s, j, op)[k ] else 0)

4 n′← Tags[b].numDeps
5 reassign← (!IsCksm(Tags[b]) ∧ n′ > 4 ∧ n < n′)
6 if b < Tags∨ IsValidCksm(CI, s)∨ reassign then
7 Tags[b]← SetTag(Tags[b], CT, s, op, CI, R, n, o)
8 return Tags

Algorithm 5: PlaceTags procedure.

function FixChecksums(CI, I, Tags, o):
1 Tagsck ← FilterAndSortTags(Tags, o)
2 CT, h← RunInstrck (I)
3 for k ∈ {0 ... |Tagsck |-1} do
4 v, idx← GetCmpOpOfTag(CT, Tagsck [k], CI, R)
5 I← FixInput(I, v, idx)
6 UnpatchProgram(Tagsck [k], CI)
7 CT, h′← RunInstrck (I′)
8 if h , h′ then
9 CI←MarkCksmFP(CI, Tagsck [k].id)

10 return CI, I, false
11 UnpatchUntaggedChecksums(CI, Tagsck )
12 h′← RunLightInstrck (I)
13 if h′ == h then return CI, I, true
14 foreach a ∈ dom(CI) | ∄ t: Tagsck [t].id == a do
15 PatchProgram(C, a)
16 h′′← RunLightInstrck (I)
17 if h′′ , h′ then CI←MarkCksmFP(CI, a)
18 UnpatchProgram(C, a)
19 return CI, I, false

Algorithm 6: FixChecksums procedure.

erroneously treat a comparison instruction as a checksum due to in-
accurate dependency information. Weizz removes all such patches
and if after that the footprint for the execution does not change,
the input repair process succeeded. This happens typically with
patches for branch outcomes that turn out to be already “implied”
by the repaired tag-dependent checksums. OtherwiseWeizz tries to
determine which patch not reflected by tags may individually cause
a divergence: it tries patches one at a time and compares footprints
to spot offending ones. This happens when Weizz initially finds a
checksum for an input and the analysis of a different input reveals
an overfitting, so we mark it as a false positive.
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function FindFieldEnd(Tags, k, depth):
1 end← GoRightWhileSameTag(Tags, k)
2 if depth < 8 ∧ Tags[end+1].ts == Tags[k].ts+1 then
3 end← FindFieldEnd(Tags, end+1, depth+1)
4 return end

Algorithm 7: FindFieldEnd procedure.
function GetRandomChunk(Tags):
1 with probability Prchunk12 do
2 k← Rand(len(Tags))
3 start← GoLeftWhileSameTag(Tags, k)
4 end← FindChunkEnd(Tags, k, 0)
5 return (start, end)
6 else
7 id← pick u.a.r. from

⋃
i {Tags[i].id}

8 start← 0, L← ∅
9 while start < |Tags | do

10 start← SearchTagRight(Tags, start, id)
11 end← FindChunkEnd(Tags, start)
12 L← L ∪ {(start, end)}, start← end + 1
13 return l ∈ L chosen u.a.r.

Algorithm 8: GetRandomChunk procedure.

Finally, as we explained in the paper Weizz at the end of the
process re-applies patches that were not a false positive, so to ease
the second stage and future surgical iterations over other inputs.
Weizz also applies patches for checksums newly discovered by
MarkChecksums in the current surgical stage.

Field Identification. Algorithm 7 shows how to implement the Find-
FieldEnd procedure that we use to detect fields complying to one
of the patterns from Figure 3, which we discussed in Section 3.2.1.
To limit the recursion at line 3 for field extension, we use 8 as
maximum depth (line 7).

Chunk Identification. As discussed in Section 3.2.2, in some formats
there might be dominant chunk types, and choosing the initial
position randomly would reveal a chunk of non-dominant type
with a smaller probability.Weizz chooses between the original and
the alternative heuristic with a probability Prchunk12 as described
in Algorithm 8.

A.3 Implementation Details
Since the analysis of branches forWeizz is context-sensitive and
the number of contexts in programs is often large [14], we extend
like in Angora the number of buckets in the coverage map from
216 as in AFL to 218, and compute the index using the source and
destination basic block addresses and a one-word hash of the call
stack. For CT we choose to host up to 216 entries since there is one
less degree of freedom in computing indexes in the Sites function
(Figure 9). In the remainder of the section we present present two
optimizations that we integrated in our implementation.

Loop Bucketization. In addition to newly encountered edges, AFL
deems a path interesting when some branch hit count changes (Sec-
tion 2.1). To avoid keeping too many inputs, AFL verifies whether
the counter falls in a previously unseen power-of-two interval. How-
ever, as pointed out by the authors of LAF-Intel [1], this approach
falls short in deeming progress with patterns like the following:

for (int i = 0; i < strlen(magic); ++i)

if (magic[i] != input[i]) return;

To mitigate this problem, in the surgical phase Weizz considers

interesting also inputs that lead to the largest hit count observed
for an edge across the entire stage.

Optimizing I2S Fuzzing. Another tuning for the surgical stage in-
volves the FuzzOperands step.Weizz decides to skip a comparison
site when previous iterations over it were unable to generate any
coverage-improving paths. In particular, the probability of execut-
ing FuzzOperands on a site is initially one and decreases with the
ratio between failed and total attempts.

A.4 Additional Experimental Data
In the following we provide two tables that recap the benchmarks
used in the evaluation (Table 2) and provide references for the
bugs we found in the programs mentioned in Section 5.2 (Table 3),
respectively. We then provide two tables where we show the 60%-
confidence interval for the median value in the charts of Figure 5
(Table 4) and Figure 6 (Table 5). Finally, we present two tables
that summarize the best alternative toWeizz for each benchmark
considered in Figure 5 (Table 6) and Figure 6 (Table 6), and details
on the crashes found by the fuzzers.

Table 2: Target applications considered in the evaluation.
Program Release Input Format
wavpack 5.1.0 WAV
decompress (openjp2) 2.3.1-git JP2
ffmpeg 4.2.1 AVI
libpng 1.6.37 PNG
readelf (GNU binutils) 2.3.0 ELF
djpeg (libjpeg-turbo) git:5db6a68 JPEG
objdump (GNU binutils) 2.32.51 ELF
mpg321 0.3.2 MP3
oggdec (vorbis-tools) 1.4.0 OGG
tcpdump 4.9.2 PCAP
gif2rgb (GIFLIB) 5.2.1 GIF

Table 3: Bugs found and reported in real-world software.
Program Bug ID Type
objdump Bugzilla #24938 CWE-476
CUPS rdar://problem/50000749 CWE-761
CUPS GitHub #5598 CWE-476
libmirage (CDEmu) CVE-2019-15540 CWE-122
libmirage (CDEmu) CVE-2019-15757 CWE-476
dmg2img Launchpad #1835461 CWE-476
dmg2img Launchpad #1835463 CWE-125
dmg2img Launchpad #1835465 CWE-476
jbig2enc GitHub #65 CWE-476
mpg321 Launchpad #1842445 CWE-122
libavformat (FFmpeg) Ticket #8335 CWE-369
libavformat (FFmpeg) Ticket #8483 CWE-190
libavformat (FFmpeg) Ticket #8486 CWE-190
libavcodec (FFmpeg) Ticket #8494 CWE-190
libvmdk GitHub #22 CWE-369
sleuthkit GitHub # 1796 CWE-125

Table 4: Basic block coverage (60% confidence intervals) after
5-hour fuzzing of the top 6 subjects of Table 2.

Programs Weizz AFLSmart Weizz†

wavpack 1824-1887 1738-1813 1614-1749
readelf 7298-7370 6087-6188 6586-6731
decompress 5831-6276 6027-6569 5376-5685
djpeg 2109-2137 2214-2221 2121-2169
libpng 1620-1688 1000-1035 1188-1231
ffmpeg 15946-17885 9352-9923 14515-14885



ISSTA ’20, July 18–22, 2020, Virtual Event, USA Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa

Table 5: Basic block coverage (60% confidence intervals) after
24-hour fuzzing of the bottom 8 subjects of Table 2.

Programs Weizz Eclipser AFL++ AFL
djpeg 612-614 492-532 561-577 581-592
libpng 1747-1804 704-711 877-901 987-989
objdump 3366-4235 2549-2648 2756-3748 2451-2723
mpg321 428-451 204-204 426-427 204-204
oggdec 369-372 332-346 236-244 211-211
readelf 7428-7603 2542-2871 4265-5424 2982-3091
tcpdump 7662-7833 6591-6720 5033-5453 4471-4576
gif2rgb 453-464 357-407 451-454 457-465

Table 6: Weizz vs. best alternative for targets of Figure 5: a
basic block (BB) coverage percentage higher than 100means
that Weizz outperforms the best alternative fuzzer.

Program Best Alternative BB % w.r.t. Best Crashes found by

wavpack AFLSmart 106% all
readelf Weizz† 110% none
decompress AFLSmart 100% none
djpeg AFLSmart 96% none
libpng Weizz† 132% none
FFmpeg Weizz† 114% Weizz

Table 7: Weizz vs. best alternative for targets of Figure 6.
Columns have the same meaning used in Table 6.

Program Best Alternative BB % w.r.t. Best Crashes found by

djpeg AFL 105% none
libpng AFL 180% none
objdump AFL++ 120% Weizz
mpg321 AFL++ 100% Weizz, AFL++
oggdec Eclipser 108% none
readelf AFL++ 175% none
tcpdump Eclipser 117% none
gif2rgb AFL 100% none
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