
#IEEESecDev https://secdev.ieee.org/2020

Fuzzing Binaries for Memory Safety
Errors with QASan

 Andrea Fioraldi, Daniele Cono D’Elia, Leonardo Querzoni

Fuzz Testing or Fuzzing

2Fuzzing Binaries for Memory Safety Errors with QASan

● A very effective random testing technique that discovered thousands of bugs

Input
Generation

Program
Under Test

Crashes

Challenges

3Fuzzing Binaries for Memory Safety Errors with QASan

● Trigger as many faults as possible in a given time window

Coverage-guided Fuzzing

Corpus Input
Mutation

Program
Under Test

Crashes

Coverage

4Fuzzing Binaries for Memory Safety Errors with QASan

Challenges

5Fuzzing Binaries for Memory Safety Errors with QASan

● Trigger as many faults as possible in a given time window

○ Coverage-guided Fuzzing

Challenges

6Fuzzing Binaries for Memory Safety Errors with QASan

● Trigger as many faults as possible in a given time window

○ Coverage-guided Fuzzing

● Observe the failure to know if a fault is triggered

Sanitization

7Fuzzing Binaries for Memory Safety Errors with QASan

Add tripwires to expose silent faults at runtime

● AddressSanitizer

● MemorySanitizer

● UndefinedBehaviourSanitizer

● ThreadSanitizer

● ...

What about closed-source binaries?

8Fuzzing Binaries for Memory Safety Errors with QASan

● Get coverage with

○ Dynamic Binary Translation (QEMU, Intel PIN, DynamoRIO, ...)

○ Hardware support (Intel PT)

○ Static Rewriting (DynInst, e9patch, RetroWrite (x86_64 only), …)

What about closed-source binaries?

9Fuzzing Binaries for Memory Safety Errors with QASan

● Get coverage with

○ Dynamic Binary Translation (QEMU, Intel PIN, DynamoRIO, ...)

○ Hardware support (Intel PT)

○ Static Rewriting (DynInst, e9patch, RetroWrite (x86_64 only), …)

● Sanitize with

○ Static Rewriting (RetroWrite (x86_64 only))

Fuzzing with (AFL++) QEMU

10Fuzzing Binaries for Memory Safety Errors with QASan

● Block caching to parent process when forking

● Analyses for comparison instructions (CompareCoverage, CmpLog)

● 2x slowdown compared to afl-gcc in fork() mode, faster in persistent or snapshot

mode

● Wide range of architectures (i386, ARM, MIPS, s390x, RISC-V, …)

● Stop execution without invoking the kernel scheduler (IPC-free fuzzing in the near

future)

Fuzzing with (AFL++) QEMU

11Fuzzing Binaries for Memory Safety Errors with QASan

Sanitize with QEMU?

12Fuzzing Binaries for Memory Safety Errors with QASan

● Sanitize libraries

● Fast instrumentation with DBT

● Shadow memory outside the guest

● Immediate setup

● Cannot sanitize stack and globals when binary-only :(

AddressSanitizer + QEMU = QASan

13Fuzzing Binaries for Memory Safety Errors with QASan

14Fuzzing Binaries for Memory Safety Errors with QASan

15Fuzzing Binaries for Memory Safety Errors with QASan

Instrument memory

accesses to check for

violations

16Fuzzing Binaries for Memory Safety Errors with QASan

Instrument calls to

maintain a shadow call

stack and track

allocations contexts

17Fuzzing Binaries for Memory Safety Errors with QASan

Replace the allocator

to clobber invalid

regions in the shadow

memory

Hypercalls

18Fuzzing Binaries for Memory Safety Errors with QASan

● Fake syscall

● Backdoor

syscall(QASAN_FAKESYS_NR, action, arg1, arg2, arg3)

Hypercalls

19Fuzzing Binaries for Memory Safety Errors with QASan

● Fake syscall

● Backdoor

void* qasan_backdoor(int, void*, void*, void*)

qasan_backdoor:

 mov rax, rdi # action

 mov rdi, rsi # arg1

 mov rsi, rdx # arg2

 mov rdx, rcx # arg3

 .byte 0x0f

 .byte 0x3a

 .byte 0xf2

 ret

Hypercalls

20Fuzzing Binaries for Memory Safety Errors with QASan

● Fake syscall

● Backdoor

void* qasan_backdoor(int, void*, void*, void*)

qasan_backdoor:

 mov rax, rdi # action

 mov rdi, rsi # arg1

 mov rsi, rdx # arg2

 mov rdx, rcx # arg3

 .byte 0x0f

 .byte 0x3a

 .byte 0xf2

 ret

Symbol hooking

21Fuzzing Binaries for Memory Safety Errors with QASan

● Replace common libraries

routines with checked versions

● Not needed when libraries are

instrumented

char *strcpy(char *dest, const char *src) {

 size_t l = __libqasan_strlen(src) + 1;
 QASAN_LOAD(src, l);
 QASAN_STORE(dest, l);
 return __libqasan_memcpy(dest, src, l);

}

Function hotpatching

22Fuzzing Binaries for Memory Safety Errors with QASan

● Some optimized libc functions speculate about page boundaries

when reading buffers: this is generally fine but represents a

violation for the sanitizer if libc is instrumented.

● At startup, QASan hotpatches critical functions in libc using

trampolines. Symbol hooking is not enough, as the original

implementation is still called from internal libc functions.

Heap bugs detection (Juliet dataset, TN 50% FP 0%)

23Fuzzing Binaries for Memory Safety Errors with QASan

QASan TP QASan
FN

ASan TP ASan FN Memcheck
TP

Memcheck
FN

Heap-based Buffer
Overflow

47.88 2.12 47.17 2.83 47.88 2.12

Double-Free 50.0 0.0 50.0 0.0 50.0 0.0

Use-After-Free 50.0 0.0 50.0 0.0 50.0 0.0

Freeing non-Heap
Memory

49.98 0.0 50.0 0.0 50.0 0.0

More bugs, limited overhead

24Fuzzing Binaries for Memory Safety Errors with QASan

25Fuzzing Binaries for Memory Safety Errors with QASan

26Fuzzing Binaries for Memory Safety Errors with QASan

Future directions

27Fuzzing Binaries for Memory Safety Errors with QASan

● Full-system sanitization

● Other sanitizers

● Stack use-after-return detection

Thank You!

28Fuzzing Binaries for Memory Safety Errors with QASan

https://github.com/andreafioraldi/qasan

https://github.com/andreafioraldi/qasan

Thank You!

29Fuzzing Binaries for Memory Safety Errors with QASan

https://github.com/andreafioraldi/qasan

https://github.com/andreafioraldi/qasan

