
#IEEESecDev https://secdev.ieee.org/2020

Fuzzing Binaries for Memory Safety
Errors with QASan

 Andrea Fioraldi, Daniele Cono D’Elia, Leonardo Querzoni



Fuzz Testing or Fuzzing
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● A very effective random testing technique that discovered thousands of bugs
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Challenges
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● Trigger as many faults as possible in a given time window



Coverage-guided Fuzzing
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● Trigger as many faults as possible in a given time window

○ Coverage-guided Fuzzing
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● Trigger as many faults as possible in a given time window

○ Coverage-guided Fuzzing

● Observe the failure to know if a fault is triggered



Sanitization
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Add tripwires to expose silent faults at runtime

● AddressSanitizer

● MemorySanitizer

● UndefinedBehaviourSanitizer

● ThreadSanitizer

● ...



What about closed-source binaries?
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● Get coverage with

○ Dynamic Binary Translation (QEMU, Intel PIN, DynamoRIO, ...)

○ Hardware support (Intel PT)

○ Static Rewriting (DynInst, e9patch, RetroWrite (x86_64 only), …)
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Fuzzing with (AFL++) QEMU
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● Block caching to parent process when forking

● Analyses for comparison instructions (CompareCoverage, CmpLog)

● 2x slowdown compared to afl-gcc in fork() mode, faster in persistent or snapshot 

mode

● Wide range of architectures (i386, ARM, MIPS, s390x, RISC-V, …)

● Stop execution without invoking the kernel scheduler (IPC-free fuzzing in the near 

future)



Fuzzing with (AFL++) QEMU
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Sanitize with QEMU?
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● Sanitize libraries

● Fast instrumentation with DBT

● Shadow memory outside the guest

● Immediate setup

● Cannot sanitize stack and globals when binary-only :(



AddressSanitizer + QEMU = QASan
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Instrument memory 

accesses to check for 

violations
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Instrument calls to 

maintain a shadow call 

stack and track 

allocations contexts
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Replace the allocator 

to clobber invalid 

regions in the shadow 

memory



Hypercalls
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● Fake syscall

● Backdoor

syscall(QASAN_FAKESYS_NR, action, arg1, arg2, arg3)



Hypercalls
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● Fake syscall

● Backdoor

# void* qasan_backdoor(int, void*, void*, void*)

qasan_backdoor:

  mov rax, rdi   # action

  mov rdi, rsi    # arg1

  mov rsi, rdx   # arg2

  mov rdx, rcx  # arg3

  .byte 0x0f

  .byte 0x3a

  .byte 0xf2

  ret
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Symbol hooking
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● Replace common libraries 

routines with checked versions

● Not needed when libraries are 

instrumented

char *strcpy(char *dest, const char *src) {

  size_t l = __libqasan_strlen(src) + 1;
  QASAN_LOAD(src, l);
  QASAN_STORE(dest, l);
  return __libqasan_memcpy(dest, src, l);

}



Function hotpatching
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● Some optimized libc functions speculate about page boundaries 

when reading buffers: this is generally fine but represents a 

violation for the sanitizer if libc is instrumented.

● At startup, QASan hotpatches critical functions in libc using 

trampolines. Symbol hooking is not enough, as the original 

implementation is still called from internal libc functions.



Heap bugs detection (Juliet dataset, TN 50% FP 0%)
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QASan TP QASan 
FN

ASan TP ASan FN Memcheck 
TP

Memcheck 
FN

Heap-based Buffer 
Overflow

47.88 2.12 47.17 2.83 47.88 2.12

Double-Free 50.0 0.0 50.0 0.0 50.0 0.0

Use-After-Free 50.0 0.0 50.0 0.0 50.0 0.0

Freeing non-Heap 
Memory

49.98 0.0 50.0 0.0 50.0 0.0



More bugs, limited overhead
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Future directions
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● Full-system sanitization

● Other sanitizers

● Stack use-after-return detection



Thank You!
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https://github.com/andreafioraldi/qasan

https://github.com/andreafioraldi/qasan
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