
Program State Abstraction for Feedback-Driven
Fuzz Testing using Likely Invariants

Faculty of Information Engineering, Computer Science and Statistics

Degree course in Engineering in Computer Science

Candidate

Andrea Fioraldi
ID number 1692419

Thesis Advisor

Dr. Daniele Cono D’Elia

Co-Advisor

Prof. Davide Balzarotti

Academic Year 2019/2020

Program State Abstraction for Feedback-Driven Fuzz Testing
using Likely Invariants
Master’s thesis. Sapienza – University of Rome

© 2020 Andrea Fioraldi. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: andreafioraldi@gmail.com

mailto:andreafioraldi@gmail.com

To my grandmother L.,
who when she was a brilliant child,

despite the darkest hours of our country had just passed,
could not continue studying because the hearts of many were still black.

v

Abstract

Fuzz testing proved its great effectiveness in finding software bugs in the latest years,
however, there are still open challenges. Coverage-guided fuzzers suffer from the
fact that covering a program point does not ensure the trigger of a fault. Other
more sensitive techniques that in theory should cope with this problem, such as
the coverage of the memory values, easily lead to path explosion. In this thesis,
we propose a new feedback for Feedback-driven Fuzz testing that combines code
coverage with the “shape” of the data. We learn likely invariants for each basic block
in order to divide into regions the space described by the variables used in the block.
The goal is to distinguish in the feedback when a block is executed with values that
fall in different regions of the space. This better approximates the program state
coverage and, on some targets, improves the ability of the fuzzer in finding faults.
We developed a prototype using LLVM and AFL++ called InvsCov.

vii

Acknowledgments

I want to thank my advisors Davide and Daniele for the work done, in temporal
order, to support me in the journey of the master thesis, despite a global pandemic
and a busy student (myself) with too many other projects to carry on. I want to
thank my family, my old and new friends, and the hackers’ community that always
I’m proud to be part of for the support and encouragement to pursue my work. This
thesis was made mostly during my internship in the S3 lab of EURECOM, that I
want to thank for the funding, the burned CPU cores, and the nice welcome.

ix

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Structure of the Thesis . 3

2 Basics of Software Testing 5
2.1 Correctness . 5
2.2 Validation and Verification . 6
2.3 Properties of Testing . 6
2.4 Automation in Testing . 7

2.4.1 Efficiency Criteria . 7
2.5 Testing Techniques . 8

2.5.1 Specification-based Testing 8
2.5.2 Structural Testing . 8
2.5.3 Model-based Testing . 9
2.5.4 Property-based Testing . 10

3 The Art of Fuzzing 13
3.1 Generic Definitions . 13
3.2 Fuzzers Classification . 14
3.3 Feedback-driven Fuzzing . 16

3.3.1 Oracle . 17
3.3.2 Observation Channel . 18
3.3.3 Executor . 18
3.3.4 Feedback . 18
3.3.5 Input . 19
3.3.6 Corpus . 20
3.3.7 Mutator . 21
3.3.8 Generator . 22

x Contents

3.3.9 Stage . 22
3.4 Challenges . 23

3.4.1 Roadblocks . 23
3.4.2 Invalid inputs . 24
3.4.3 Faults without Failures . 24
3.4.4 State Tracking . 24
3.4.5 Path Explosion . 25
3.4.6 Scaling Implementations . 25
3.4.7 Hard Targets . 26

3.5 Evaluation Criteria . 26

4 Methodology 29
4.1 Definitions . 29
4.2 The Basic Block State . 31
4.3 Program State Abstraction . 32
4.4 Mining Subspaces . 34
4.5 An Invariants-based Coverage . 34
4.6 Pruning Invariants . 35

4.6.1 Comparability Calculation . 36
4.6.2 Inviolable Invariants . 37
4.6.3 Deduplicate Invariants . 38

4.7 Corpus selection . 39
4.8 Discussion . 40

5 Implementation 41
5.1 The Low Level Virtual Machine Infrastructure 41
5.2 The Daikon invariant detector . 43
5.3 The AFL++ fuzzing framework . 44
5.4 The InvsCov pipeline . 45

5.4.1 Dumper compilation . 45
5.4.2 Online learning . 47
5.4.3 Checks generation . 47
5.4.4 Target compilation . 48

6 Evaluation 51
6.1 Setup and Dataset . 51
6.2 Efficiency in finding faults . 53
6.3 Performance overhead . 54

Contents xi

6.4 Discussion . 55

7 Conclusion 57
7.1 Future directions . 58

1

Chapter 1

Introduction

In the last two decades Fuzz Testing (or Fuzzing) gained popularity thanks to
its ability in finding software bugs more effectively than other Software Testing
techniques.

It is employed every day since 2016 in Google’s OSS-Fuzz [5] to continuously
discover vulnerabilities in open source software and thousands of them were discovered
so far in this four years of activity of the program.

This popularity comes also with the attention of academia and the industry on
improving fuzzing techniques.

In recent times, on top of the twist of fuzz testing called Coverage-guided Fuzz
Testing (CGF), several new techniques were developed trying to overcome the
limitations of CGF like hard to bypass path constraints [98] [81] [90] [84] [11] or the
high number of invalid testcases generated by mutation [79] [74] [7] [16] [35].

These improvements, with some exceptions like [73], try to improve the ability of
a fuzzer to reach more code coverage. Code coverage is used as a proxy to Program
State Coverage to avoid path explosion because the number of program states can
be potentially infinite. Symbolic Execution [13] for instance does not employ such
approximation, and in fact, path explosion is one of the most critical problems that
make pure symbolic-based approaches impractical in real-world targets.

There is empirical evidence that fuzzers that uncover more code coverage discover
also more bugs in programs. This can be motivated by the observation that exploring
a portion of code is a necessary condition to find a fault in that code portion.

However, this is not a sufficient condition.
Fuzzers can saturate in coverage and never reach the combination of program

states that leads to a bug. To cope with this problem, a fuzzer should observe the
progress also in the program state data, not only in the control flow.

2 1. Introduction

Recent works like [75] [10] [95] try to go beyond simple code coverage as feedback;
we refer to these techniques — CGF included — as Feedback-driven Fuzz Testing.

Some fuzzers approximate the program state using more sensitive feedbacks,
like code coverage with call stack information or even code coverage and values
loaded and stored from memory. This second approach, as shown by [95], better
approximates the program state coverage by taking into account not only control
flow but also the values in the program state data, but it is less efficient in finding
bugs because of path explosion.

At the time of writing, the only successful approximation of the program state
coverage using also values from the program state’s data is done surgically on
targeted program points selected by a human [10]. Portions of the state space are
manually annotated and the feedback function is modified to explore such space
more thoroughly.

The automation of this process is a crucial topic in future research in this field.

In this thesis, we propose a new feedback for Fuzz Testing that takes into account
not only Code Coverage, but also some interesting portions of the program states in
a fully automated manner and without incurring path explosion.

We augment classic Edge Coverage — a type of code coverage based on edges in
the Control Flow Graph — with information about “unusual” values in the program
states observed in the incoming basic block.

We learn constraints between variables in basic blocks from executions traces of
an input corpus, generally a corpus that is the output of a previous CGF fuzzing
run, that describe how variables are related to each other and that holds for all the
executions observed so far.

These constraints are mined Program State Invariants over basic blocks.

Execution-based invariants mining techniques, like the one that we use based
on [33], suffer from the well-known Coverage Problem that means that the learned
constraints may be only local properties of the observed corpus, and the violations
of a learned invariant may not lead to a violation of the program specification. This,
however, is not a problem for our purpose.

Local properties, if enough generic like the learned invariants tries to be, are still
an interesting abstraction of the program state.

So we define a new feedback function that distinguishes the same edge with
learned invariants in the incoming basic block that holds from the same edge with
one or more learned invariant violated.

We develop a set of heuristic to produce invariants and techniques to effectively

1.1 Contributions 3

instrument programs with a low-performance overhead — a very important metric
in fuzzing — and we implement them into a prototype called InvsCov on top of
AFL++ [37].

In our evaluation, we show that a feedback that takes into account the program
state abstraction can uncover more or different, software bugs than CGF.

1.1 Contributions

The key contributions of this thesis are:

• A new feedback that uses an abstraction of the program state from mined
invariants;

• A prototype implementation based on LLVM and AFL++ called InvsCov;

• A systematization of the concepts behind Feedback-driven Fuzz Testing.

We plan to share the prototype as Free and Open Source Software.

1.2 Structure of the Thesis

In Chapter 2 we describe the basis of Software Testing and introduce various key
concepts including the invariants. In Chapter 3 we generically describe Fuzz Testing
and introduce a new abstract taxonomy for Feedback-driven Fuzz Testing. We
discuss also some of the challenges of Feedback-driven Fuzz Testing. In Chapter 4
we introduce our methodology to abstract the program state’s coverage. In Chapter
5 we present our prototype InvsCov and the technologies on which it is based. In
Chapter 6 we evaluate the prototype in terms of efficiency and effectiveness. The
thesis ends with the conclusions and the discussion of future directions in Chapter 7.

5

Chapter 2

Basics of Software Testing

Software Testing is the process that analyzes a System Under Test (SUT) to detect
differences between existing and required conditions and to evaluate its features [2].
The most common embodiment of Software Testing is the process of finding software
bugs.

Bugs cause the software to produce incorrect results or to behave unexpectedly.
Bugs are a serious matter, they affect the everyday life of every person that depends
on modern technology and, in the worst cases, cause even huge losses in terms of
money [59] and human lives [61].

2.1 Correctness

In every stage of the system development, we can shape the existence of two entities:
a specification and an implementation [58].

The development process converts the specification into the implementation. A
high-quality implementation means to satisfy as much as possible the specification.

An implementation that completely matches the specification would provide
the highest quality, but such equivalence is impossible to be stated for a Software
Testing process, otherwise, with such a process it would also be possible to solve the
Halting Problem [86].

So the correctness of a SUT cannot be expressed in terms of equivalence between
specification and implementation.

In the following, we provide some needed definitions that match with [4].

Definition 1. A failure is an externally visible deviation from the specification.

Definition 2. A fault (or bug) is portion of system state that leads to a failure.
Note that if such a state exists but is never reached it does not cause a failure.

6 2. Basics of Software Testing

Definition 3. An error is a human error that causes the system to behave as not
expected. Errors can cause faults.

Given these concepts, we define the correctness as follows.

Definition 4. A correct implementation of a specification does not contain faults.

Correctness can be achieved by constructing a system without errors or by
detecting and fixing all the faults.

In the first case, the absence of errors has to be proved formally.

2.2 Validation and Verification

The quality of a system in Software Testing is assessed by two processes: Validation
and Verification [69].

Validation is the process that evaluates if the system really meets the needs
for whom it was built. It is a subjective process that includes for instance user
evaluations and prototyping. We will not discuss validation in this thesis.

Verification is the process, more objective than Validation, that evaluates if the
implementation behaves according to the specification.

Verification processes aim to remove all the faults from the system, but this does
not guarantee of course that the system has a value, this is stated by Validation.

Note that sometimes, for instance in the beta testing stages of the software
development cycle, the two processes are combined.

2.3 Properties of Testing

For the sake of the verification of a system, a testing procedure may continue to add
tests until all the faults are uncovered.

However, with constrained resources, this is impossible, so tests have to be
prioritized.

Another property of testing is the context-dependent nature of the techniques.
Testing the autopilot software of a plane requires far different methods than testing
a toy like a Tamagochi.

Faults are often clustered, bugs are not uniformly distributed in a system. This,
for instance, affects the prioritization of the tests.

Another very important property is, using Dijkstra’s words, that software testing
can be used to show the presence of bugs, but never to show their absence.

2.4 Automation in Testing 7

So, given these properties, we want a great diversity in our tests and so it is
convenient to automatically generate tests.

2.4 Automation in Testing

Automation in Software Testing, most of the time, means sampling the input space
of a SUT to generate testcases. The goal, according to [19], is to gain confidence
about a certain degree of correctness or to find as many faults as possible.

There are also, however, unsuccessful techniques that try to find just one faulty
input to prove incorrectness. The failure in proving incorrectness, of course, does
not prove correctness, so we exclude these techniques from the treatment.

There are two types of sampling:

1. Systematic, in which the generation is informed by some artifacts from the
SUT, like the specification;

2. Random, a uniform at random sampling of the input space that basically has
no cost;

Given that we excluded techniques that find just a failing input, we can reduce
Systematic sampling to a partitions-based approach.

Each partition is a subdomain of the input space and the inputs in each partition
have common properties.

An effective type of partition strategy, as shown by [96], is the one that samples
from error-based partitions. Each partition triggers an error or not. The testing
strategy, given that is not known if a partition is associated with an error, samples
each partition using a systematic approach. This is very effective but also hard to
apply in the real world. Rather than that, several other automatic techniques are
used in practice and we discuss some of them in Sec 2.5.

2.4.1 Efficiency Criteria

As the goal of Automated Testing is to gain a certain level of confidence about the
correctness of the SUT or to uncover as much as bugs as possible, an efficiency
criteria, as introduced in [19], must relate these goals with time.

In particular, in the first case the goal of an Automated Testing is to establish
the level of confidence in a minimal amount of time, and, in the second case, to
maximize the number of found bugs in a given time.

8 2. Basics of Software Testing

When evaluating Systematic techniques, an useful insight from [19] is that if
we increase the effectiveness of the technique we have to increase the cost and so
decrease the efficiency. This leads to a second important result that is when the
SUT size is over a certain bound, Random Testing becomes more efficient than the
evaluated Systematic approach.

2.5 Testing Techniques

We can divide testing techniques into different families. In this section, we will
discuss some of them.

2.5.1 Specification-based Testing

To automatically generate a test several sources of information can be used. The
first source of information for a Systematic approach is the specification.

Techniques based on this concept are called Specification-based Testing and do not
require any knowledge of the structure of the program (i.e. programming language,
size of the codebase, etc.).

The key idea is that several tests are derived from the specification and each test
covers a partition of the System Under Test.

A common criteria, in term of partition-based testing, is to divide the input
space into unique partitions that are unique in terms of exercised program behavior
and in which is easy for an oracle to verify if such behavior, given one input, is
correct.

2.5.2 Structural Testing

Another type of technique that aims to generate testcases using the code itself as a
source of information is called Structural Testing.

A piece of typical information extracted directly from the code is the notion of
Coverage, a notion that indicates how much code is exercised executing an input.

A prominent objective of this type of testing is to test all the code maximizing
the coverage seen, but other criteria are supported as well and this affects how tests
are generated.

Several types of coverage can be defined, following we discuss the most common
classes:

• Line Coverage is probably the most straightforward type of coverage, related

2.5 Testing Techniques 9

to lines fo code covered. However, this is a problematic coverage because it is
affected by the coding style and programming language density;

• Block Coverage dope with the limitation of line coverage defining a more
objective metric. Block refers to a block in the Control Flow Graph (CFG) [6],
which is defined at a high level as the paths that can be traversed in the code.
A Basic Block is an aggregation of adjacent code lines executed without a
control flow change (i.e. no branches), a Decision Block is a block containing
the predicate that affects a control flow change and an Edge is the connector
between these blocks. A basic block has only one exit, a decision one has two
exits, one of the condition is true, the other if it is false. Block coverage is
simply when the testing technique aims to cover all the blocks in the CFG
instead of all the lines in the code;

• Edge Coverage is always related to the CFG and it is used when block coverage
is not enough in presence of complex branch conditions. Covering the edge
coverage at 100% means that all the decision branch are exercised;

• Path Coverage is the coverage of all possible independent paths in the code. In
term of the CFG, maximizing the path coverage means covering each possible
path from each node to each other connected node;

2.5.3 Model-based Testing

A model of a system under test holds some properties and attributes of such a
system in an abstract way. Using such abstraction tests can be generated.

A widely used type of model is the Decision Tables, tables that relate actions
that the systems perform and conditions to take that action.

A prominent version of model-based testing is State-machine based Testing.
A state machine describes the system using states and transitions between these

states.
To derive testcases from a state machine, like for structural testing, we can define

some types of test coverage:

• State coverage: all the states have to be covered at least once;

• Transition coverage: each transition has to be covered at least once;

• Path coverage: exercise combination of transitions called paths;

10 2. Basics of Software Testing

The typical model-based testing workflow is bringing the system into different
states and, after each transition, asserting that the system is in the expected new
state.

2.5.4 Property-based Testing

In structural testing, we use information from the code to generate tests. In Property-
based Testing, we use properties of the program to let the code itself to check the
correctness.

The oracles that check if an execution of a test is related to a correct behavior
are not anymore external but embedded in the code.

A common construct that developers employ to do that is the notion of assertion,
a boolean expression inserted in a specific program point that, if false, reveals the
presence of a bug.

Testcases can be then generated until an input that violates one of the assertions
is found. QuickCheck [21] is one of the first tools developed that generates almost
random inputs for the program under test in order to find testcases that violate one
or more assertions.

Related to this type of testing is the software design pattern called Design-by-
contracts. In this methodology, each caller component ensures that the preconditions
to call a callee component are met. The main advantage is that errors are caught by
the code itself avoiding propagation and the computation of incorrect results.

The checks that test the code during the execution are based on the concept of
Invariant, a property that is always true at one or more particular program points,
as described in [32].

Types of Invariants

Two widely known types of invariants are pre and post conditions of programs. Firstly
introduced by [50], with the term Hoare Triples we denote the triple {P}A{Q},
where P is the pre-conditions that holds before the execution of the program A, and
Q are the post-conditions that holds after the execution. Of course, A can denote
also functions in a program or even single statements.

Example. Consider the following C function that pop an element from a stack
data structure:

struct item∗ stack_pop (struct s tack ∗ stack) {

2.5 Testing Techniques 11

struct item∗ item = stack−>base ;
stack−>base = item−>next ;
stack−>s i z e −−;
return item ;

}

In this case, we can define this Hoare Triple:

• P : s tack != NULL, stack−>base != NULL, stack−>s i z e > 0;

• A: the stack_pop function;

• Q: stack−>s i z e == o r i g i n a l (stack−>s i z e) −1,
re turn == o r i g i n a l (stack−>base) ;

You can easily see that if one of the preconditions is violated there is a fault (a Null
Pointer Dereference or an Integer Overflow).

Another type of invariants are Class Invariants [49], that are strictly related to
Object-oriented Programming. These invariants refer to an object or class and hold
for the entire lifetime of such an object.

Loop invariants [38] [50] are predicates over the state of a loop that holds for
every loop execution.

Also, other types of invariants were defined in the literature, for instance like
the invariants based on concurrency constraints in [55].

Mining Invariants

Automatic invariants learning is a widely used process in verification, for instance
for testcases generation [24] or memory errors detection [85].

A valid approach to learn invariants from the code of a SUT is static analysis,
using techniques like Symbolic Execution [13], of which [92] is an example, or Abstract
Interpretation [15], used in [40].

While invariants extracted using this type of analysis most of the time correct
and without false positives, they are often overapproximation or simply the static
analysis is not enough powerful to spot some invariants that are revealed only at
runtime.

Opposite to that, many approaches like [46] [31] [76] uses information gathered
during the execution, in a dynamic fashion.

12 2. Basics of Software Testing

One of the most popular tools to extract invariants from program traces is
Daikon [33], that uses a machine learning approach to learn from traces that are in
an abstract form, allowing the tool to support many programming languages and
runtimes like C, Java, C#, and many more.

The problem of these approaches is, unlike static approaches, that the extracted
constraints are likely invariants, properties that hold at least for the observed
executions. This, while allowing the analysis to reveal more invariants, leads to false
positives with constraints that are only local properties of the observed executions.
This problem is commonly called the Coverage Problem since, if the corpus of
testcases used for learning does not cover the possible program state, at it is like
to be in real applications, there may be still testcases with different coverage that
violates the learned likely invariants.

13

Chapter 3

The Art of Fuzzing

In this chapter, we systematically review the concepts behind Fuzz Testing, a
successful Random Testing family of techniques.

In particular, we focus on Feedback-driven Fuzz Testing, a technique that evaluates
generated testcases using feedback from the System Under Test (SUT).

3.1 Generic Definitions

Definition 5. Fuzz testing or Fuzzing, according to [66], is the repeated execu-
tion of the Program Under Test (PUT) using inputs sampled from an input space
and that stresses the PUT with unexpected inputs. We can generalize Fuzzing using
SUT as subject instead of PUT.

The usage of SUT is motivated by the fact that Fuzz Testing is nowadays
extended to other domains, for instance, it can be used to test a web application
composed of different distributed components or a set of programs communicating
with each other like the IPC stack of a browser.

We simply call a program that implements a Fuzzing technique Fuzzer.

Definition 6. A Violations Oracle is a process that determines if an execution
of the SUT violates some requirements.

An example of requirements is the correctness of the SUT or some performance
requirements. We can also, for instance, assert that some code must not be reached
if a specific configuration of the SUT is provided and use Fuzzing to try to find an
input that executes that code under that configuration. Typically, many fuzzers
look for crashes in a program, an easily observable type of failure.

14 3. The Art of Fuzzing

Definition 7. The Fuzzer State is the set of variables and artifacts (e.g. the
instrumentation added to the SUT if any) that affects the behavior of the Fuzzer.
They can evolve during the fuzzing process.

Note that the fuzzer state is called configuration in [66], however, this is misleading
while talking about tunable fuzzers like [37], so we use the term State instead.

A generic enough algorithm that can be used to define fuzz testing is 1.

Algorithm 1: Generic Fuzz testing
Result: The set V of testcases with violations
V ← ∅
S ← Preprocess(S)
while Continue(S) do

I ← InputGeneration(S)
S, V ← InputEvaluation(I,O, S, V)

return V

The abstract stages in the algorithms are defined accordingly to [66] but in a
more generic flavor.

We define such stages as follows.

Definition 8. The Preprocess stage is executed once before the fuzzing loop and
modify the initial Fuzzer state.

Definition 9. The Continue stage decides, looking at the current state, if the fuzzer
must stop or continue to search for violations.

Definition 10. The InputGeneration stage generate a testcase for the current run
using the state.

Some Fuzzers can use for instance previous testcases embedded in the state to
generate a new testcase.

Definition 11. The InputEvaluation stage is the stage responsible to feed the
SUT with the newly generated input and use the violations oracle O to determine if
this is a testcase that violates some of the requirements. It also updates the Fuzzer
state with information useful in other stages.

3.2 Fuzzers Classification

Until now we defined fuzzing in a generic way, unrelated to the actual System Under
Test or to the specification.

3.2 Fuzzers Classification 15

We can go further in the definition of Fuzz Testing using classes based on how
the Fuzzer generates the testcase and how much information about the SUT it needs.

Firstly, looking at the InputGeneration stage, we can define two types of genera-
tions:

• Model-based generation uses a model of the input format of the SUT embedded
in the Fuzzer State to generate the testcase from scratch. It can be for instance
a grammar specified in the initial Fuzzer state by a human (e.g. [51]), a mined
model using learning techniques (e.g. [43]) or hardcoded generation rules in
the algorithm (e.g. [97]);

• Mutation-based generation uses previous testcases called corpus that has to be
provided in the initial state or saved in the state during the previous executions
of InputEvaluation to generate the testcase modifying a testcase in the corpus;

Note that the mutational generation can use different strategies to mutate an
input, even a model of the input format like model-based generation like in [7] [79].
The difference, in this case, is that the new testcase is not generated from scratch.

Orthogonally to the properties of InputGeneration, we can classify a fuzzer using
the information that it needs from the actual SUT.

There are three common classes of fuzzers based on this criteria [41]:

• Black-box fuzzers does not need any insight from the SUT. The first attempts
at fuzzing are of this type, which is closely related (if not even equal) to
traditional Random Testing. Note that the lack of information from the actual
implementation does not imply the lack of information about parts of the
specification. For instance, black-box fuzzers like Peach [30] require a model
of the input format to generate testcases;

• White-box fuzzers systematically inspect the state space of the SUT using
internals information. White-box fuzzing can often overlap with Systematic
Structural Testing. An example is SAGE [42] that tries to maximize code
coverage using constraints gathered during the execution;

• Grey-box fuzzers stands in the middle of the two previous approaches. They
collect minimal information from the SUT to better explore the input space
while maintaining the performance overhead low. Traditionally, the information
is collected during the SUT execution and it is code coverage, like in [99];

16 3. The Art of Fuzzing

The distinction between these categories is often unclear, they are commonly
used in the Security community but it is a debatable taxonomy, in this traction, we
will avoid it and use the taxonomy from Software Testing when possible.

3.3 Feedback-driven Fuzzing

There is a strong empirical evidence [5] that fuzzing with code coverage as feedback
from the SUT increases the efficiency in terms of the number of founds faults in a
given time window.

Many fuzzers rely on code coverage (mostly use edge coverage [99] [63]) as a
feedback, but the technique is not limited to this particular information and, as
shown by [10] [75] [95], there can be many types of feedbacks (Sec. 3.3.4) that a
fuzzer can use to better explore the input space.

Fuzzers typically employ evolutionary algorithms to process the collected in-
formation from the SUT. A general enough version of those algorithms is Alg.
2.

Algorithm 2: Basic Evolutionary Fuzz testing
Result: The set V of testcases with violations
V ← ∅
S[Corpus]← InitialCorpus

S[SUT]← Instrument(S[SUT]) . Preprocess
while Continue(S) do

T ← PickTestcase(S)
N ← Calibrate(T, S)
for i← 0 to N do

I ← InputMutation(T) . Mutation-based InputGeneration
S, V ← InputEvaluation(I,O, S, V)

return V

InputEvaluation in Alg. 2 is responsible to evolve the Corpus in the fuzzer state.
In Feedback-driven Fuzzing it executes the SUT with the generated input and,

looking at the gathered feedback, if the execution is interesting it adds the testcase
to the corpus. We can formalize Feedback-driven InputEvaluation as in Alg. 3.

IsInteresting is deeply connected with the feedback chosen, which has to maintain

3.3 Feedback-driven Fuzzing 17

Algorithm 3: InputEvaluation in Feedback-driven Fuzz testing
Data: The generated input I, the violations oracle O, the current fuzzer

state S and the set V of testcases with violations
Result: The next fuzzer state S and the updated set V of testcases with

violations
Tr ← Execute(I) . Tr is the observed trace of the execution
if IsViolation(O, Tr) then

V ← AddToSet(V, I)

if IsInteresting(S, Tr) then
S ← EvolveCorpus(S, I)

return S, V

in the fuzzer state progress information. In the simple case of code coverage, in the
state, there is the coverage seen so far and IsInteresting returns true only if there is
a previously unseen coverage in Tr.

To better define Feedback-driven Fuzz Testing, we can systematically define
all of its entities and how they are related to the abstract stages defined in 3.1.
Note that these concepts are also abstract themself and we can use them to classify
feedback-driven fuzzers.

3.3.1 Oracle

As defined in 3.1, a Violation Oracle inspects the execution of the SUT to decide if
a testcase violates or not the expected requirements.

For Feedback-driven Fuzz Testing we add another property to the oracles, con-
cerning the feedback: the ability to distinguish between violating inputs that are
duplicates in terms of violated requirements or some other criteria.

Definition 12. An Oracle is an entity that inspects the execution of the SUT to
determine if it violates the given requirements. Besides, it decides if a violating
testcase is worth to be added to the set of violating testcase V based on some criteria.

We said that this new property is somewhat related to the feedback because,
typically, fuzzers uses the feedback to distinguish between crashing inputs that
probably trigger the same bug. For instance, AFL [99] use the coverage to distinguish
crashes. If a new crash does not trigger new coverage in relation to the testcases
already in V, it is discarded as a duplicate.

Other fuzzers like [91] use the hash of the callstack just after the crash.

18 3. The Art of Fuzzing

Another common type of oracle is the one employed by differential fuzzing that
tests if the outcome of an implementation is the same of the outcome of another
considered correct [12].

3.3.2 Observation Channel

Definition 13. An Observation Channel is an entity that provides information
about the SUT execution to the fuzzer.

The execution trace Tr in 3 is a possible outcome of an Observation Channel. It
is used to get the information needed by the feedback.

An example of an observation channel is the shared memory of AFL. It is a
shared bitmap between the target and the fuzzer that reports the coverage.

Note that the feedbacks uses the observation channels, but they are not limited
to be used only for feedbacks [35].

3.3.3 Executor

The concept of executing the SUT is not always the same. For instance, for in-memory
fuzzers like LibFuzzer [63] the SUT is a harness function, for hypervisor-based
fuzzers like KAFL [88] instead the SUT can be the entire operating system.

All fuzzers, however, needs the same primitives to execute a SUT.

Definition 14. An Executor is an entity with a set of violation oracles 3.3.1, a set
of observation channels 3.3.2, a function that allows instructing the SUT about the
input to test, and a function to run the SUT.

Placing an input in the SUT can be a very different task depending on the type
of executor. LibFuzzer just place it as arguments of the harness function, while
other fuzzers can write to the program standard input or in a specific memory region
when executing the target inside an emulator or a similar controlled environment.

3.3.4 Feedback

As the technique is Feedback-driven, the concept of Feedback is quite important.
The fuzzer must interpret the information retrieved using the observation channels

and relate it to the fuzzer state.

Definition 15. A Feedback is an entity that defines how to interpret the gathered
information from observation channels and how to evolve the corresponding fuzzer
state, specifically how to evolve the testcases corpus based on that information.

3.3 Feedback-driven Fuzzing 19

For instance, given an observation channel that reports the size of memory
allocations, a feedback that aims to maximize these allocations size to spot out-of-
memory bugs can be defined with the following sentence:

Given a map M from the observation channel, each entry corresponds to a single
program point and it is a 64-bit unsigned integer. The fuzzer state must maintain an
accumulation map A that, for each registered allocation program point, maintains
the maximum size of the allocation seen so far. A testcase is added to the corpus
(IsInteresting) if when updating A with the corresponding M , at least one entry is
updated.

In literature, some fuzzers make use of feedbacks that does not simply aim to
maximize code coverage, like PerfFuzz [60] that maximizes the execution counts
of all the program locations to spot performance issues and FuzzFactory [75] that
implements different feedback functions based on maps.

Note that many fuzzers use a map as observation channel and a reduce function
to evaluate if the collected information is interesting, but the notion of feedback is
not limited to this particular embodiment.

3.3.5 Input

Until this point, we did not specifically define what is an input for the SUT because
it is an abstract concept. It is, in general, a sample from the Input Space, all the
possible data that the SUT can take from an external source and that affects its
behavior.

In the straightforward case, the input is a simple file or buffer passed to a
program, but it can be also, for instance, a sequence of actions [80] or even different
values read in different program points independently [93].

Definition 16. An Input entity defines one possible sample from the Input Space
and can hold properties about the input itself, the relation between the input and the
SUT, or the input and the specification.

Note that the description of how the SUT consumes the input is provided by the
Executor.

Input metadata

We refer to the properties that the Input can hold as Input metadata.
An example of metadata, that relates the input to the specification, is the virtual

structure.

20 3. The Art of Fuzzing

Fuzzers such as AFLSmart [79] or Nautilus [7] maintains a tree representing the
Abstract Syntax Tree of the input when parsed using an Input Format Specification
provided by the user. That information comes from the specification of the SUT
(e.g. we know that the program under test process PNG files) and it is used in the
mutator 3.3.7 to perform structure-aware mutations.

Another example of metadata is the tags extracted by Weizz [35] from the SUT
using dynamic analysis. Like in the previous example, this metadata is used for
mutation, but it relates the input with the SUT and not with the specification,
because they are extracted using an observation channel.

A third, and naive, example of metadata that related the input with the SUT is
the execution time, and one that is a property of the input itself is the size in bytes
if it is a buffer. This kind of metadata is often used in AFL-like fuzzers to prioritize
simpler inputs.

Scheduling inputs

The outcome of Calibrate in evolutionary fuzzing is affected by the current Input T
extracted from the corpus.

Calibrate controls how many fuzzing iterations have to be done mutating a
testcase. It can employ algorithms based on the input metadata, for instance, the
execution time.

These algorithms that schedule how many iterations are assigned to a testcase
are commonly referred to as Power schedules. Several works addressed this problem
like [20] [18], using, for instance, the triggered coverage as input metadata. An
interesting insight from these works is that is convenient for some fuzzers to give
more iterations to testcases that cover program points that are rarely stressed.

3.3.6 Corpus

The Corpus is a set of inputs in the fuzzer state. In Feedback-driven Fuzzing, it is
necessarily connected to the Feedback.

Definition 17. A Corpus is an entity that collects inputs that are interesting for
one or more feedbacks, and defines how they are related to each other and how to
feed the fuzzer with those inputs when requested.

The Corpus is implemented as a data structure containing inputs, but it can
differ a lot for each fuzzer.

3.3 Feedback-driven Fuzzing 21

For instance, AFL uses a queue to store inputs, but other fuzzers use just a
simple container that feeds the fuzzer using a random selection algorithm.

The Corpus is also not unique. There can be a corpus that contains inputs
interesting for just one feedback.

Corpus transitions

The Corpus can use inputs metadata to relate the inputs to each other and schedule
how to serve testcases to the fuzzer when it needs them for a fuzzing run.

We can view the Corpus as an evolving entity not only when adding a new
testcase, but also when the fuzzer requests the next testcase to fuzz.

We call this second type of evolution from a request to another Corpus transition.
When a Corpus randomly selects the next testcase, the transition is the simplest.

When it is a queue, the transition is the get operation of the queue.
More complex fuzzers employ algorithms to select smartly the next testcase. For

instance, AFL uses the coverage triggered by each input to create a minimized subset
of the Corpus that covers the entire coverage seen so far. With a high probability,
only inputs in this subset, that is periodically updated, are fuzzed.

3.3.7 Mutator

Definition 18. A Mutator is an entity that takes one or more inputs and generates
a new derived one.

A mutator can both modify the input and the related metadata. Some mutators
work just on the metadata and then the change is replaced to the testcase.

The concept of mutator is deeply linked with the definition of the input for the
SUT, typically for each type of input, there are specialized mutators.

Scheduling mutations

A mutator most times can apply more than a single type of mutation on the input.
Consider a generic mutator for a byte stream, bit flip is one of the possible mutations
but not the single one, there is also, for instance, the random replacement of a byte
of the copy of a chunk.

When a mutator has a collection of mutations, what mutations have to be used
for the specific input is a problem addressed scheduling the mutations.

Naively, for most fuzzers, the number of mutations is a random bounded number
and the sequence of mutations is randomly chosen too. In more complex approaches,

22 3. The Art of Fuzzing

a scheduling algorithm is chosen.
For instance, MOpt uses particle swarm optimization to select mutations based

on their effectiveness in finding new interesting input in past iterations of the fuzzer.

3.3.8 Generator

Definition 19. A Generator is an entity that generates a new input from scratch
possibly using some parameters.

Opposed to input creation by mutation, there is input creation by generation.
Feedback-driven Fuzzing is most of the time related to Evolutionary Fuzz Testing
that, of course, needs a mutator to evolve the corpus. There are, however, situations
in which generators are used in this kind of testing.

One is when the generator is invoked by a mutator, like when mutating a virtual
structure of the input. Consider a mutator that operates on the Abstract Syntax
Tree, it can randomly replace a subtree with a new one generated from scratch as a
mutation. In this case, generation is a mutation.

Another situation is when the SUT itself asks for the input the fuzzer in different
stages (e.g. a stateful network protocol when a request-response sequence is consid-
ered a single input), and the entire input that was initially created by mutation was
already given to the SUT. In this case, the fuzzer has to generate an extension of
the input previously generated by mutation and can do that using a generator.

A third situation, less explored, is using Feedback-driven Fuzzing not to evolve
a corpus of testcases, but a corpus of parameters for the generator. Consider a
grammar-based generator, a parameter that affects the generations is, for instance,
the probability to choose a terminal node or go deeper in the grammar and continue
exploring a nonterminal. These parameters can potentially be tuned using the
feedback.

3.3.9 Stage

Definition 20. A Stage is an entity that operates some actions on a single input.

This definition of Stage is very abstract, we used it because it is just a proxy
used as a building block of the fuzzing algorithm.

A mutational stage, given an input of the corpus, applies a mutator and executes
the generated input one or more time. How many times this has to be done can be
scheduled, AFL for instance use a performance score of the input to choose how
many times the havoc mutator should be invoked. This can depends also on other

3.4 Challenges 23

parameters, for instance, the length of the input if we want to just apply a sequential
bitflip, or be a fixed value.

A stage can be also an analysis stage, for instance, the colorization stage of
RedQueen that aims to introduce more entropy in a testcase or the trimming stage
of AFL that aims to reduce the size of a testcase. A possible stage can also, for
instance, execute the SUT with particular instrumentation to extract some input
metadata, like in Weizz.

3.4 Challenges

The latest state-of-the-art research in Fuzz Testing tries to address some of the
challenges that make fuzzing less efficient.

3.4.1 Roadblocks

The most straightforward limitation, when dealing with coverage as feedback, is the
code roadblocks for the fuzzer. Multi-byte comparisons are one type of roadblock
because, given a generic byte stream mutator, it is nearly impossible to guess the
exact value of the other operand of the comparison to flip the branch.

Example.
Consider the following C code snippet:

void f oo (int x) {
i f (x == 0xbabdcafe)

bug () ;
}

If x is the input provided by the fuzzer, the probability that the branch is flipped
guessing that x should be 0xbabdcafe is almost 0.

In literature, this issue is addressed using a feedback that track the progress of
the comparison [3] [62], with concolic execution combined with fuzzing [98] [81] or
with techniques that extract the comparison values and try to replace patterns in
the input [84] [11].

Other common roadblocks are the checksums. They are mostly used to protect
chunks of binary formats against corruption, the probability that a generic fuzzer
mutates the protected bytes and, at the same time, restore the checksum field validity
is almost 0.

24 3. The Art of Fuzzing

This problem can be addressed using a specific mutator for the binary for-
mat or with code transformation that patch the program removing the checksum
checks [11] [78] [35].

3.4.2 Invalid inputs

Another challenge of fuzzers with generic mutators is the high rate of generated
invalid inputs.

When the mutator likely breaks the validity of the input, the fuzzer stresses most
of the times the code related to parsing, but not deeper code.

In order to effectively fuzz deep paths, the fuzzer must produce valid inputs, and
this can be achieved using a model of the input format to guide the mutator, like
in [79] [7].

Some techniques tried to approximate that automatically, without a human
written model [16] [35] [68].

Another approach is to constrain the mutator to not touch the portion of the
input that leads to the deep path and even constraint the possible values that an input
field can take using, for instance, constraints collected using concolic tracing [52].

3.4.3 Faults without Failures

Most oracles in fuzzers use failures to know if a testcase violates the requirements,
in particular crashes, but sometimes a fault does not directly trigger a failure.

To catch these kinds of bugs, the SUT is often instrumented with additional
tripwires to catch silent faults. For instance, a one-byte overflow in read on the
heap will unlikely trigger a crash in a C program. To handle this situation, source-
based fuzzers offer the possibility to instrument the programs with sanitizers such
as AddressSanitizer [89]. Others make use of binary-only tripwires to uncover
silent corruptions [70], inserted both dinamically, like the QEMU-based sanitization
available for AFL++ [36], or statically [29] [39].

These sanitizers however cannot catch some pure logic bugs, and fuzzing to
uncover this kind of bugs automatically (e.g. without putting manually assertions
in the code) is an open field of research.

3.4.4 State Tracking

The code coverage, or some extension of it like comparisons feedback, is often not
enough to explore the state space of a SUT. For instance, the code that handles a
specific type of chunk in a binary format is considered always the same in terms of

3.4 Challenges 25

coverage, even when the previously processed chunk is different. The interleaving of
different chunks is still an interesting property of those programs and often bugs are
related to it, but most fuzzers cannot get feedback from it because code coverage
does not notice it.

The current method to overcome this challenge is to manually select some state
variables and get feedback from them manually [10].

The technique proposed in this thesis tries to address this particular challenge
automatically.

3.4.5 Path Explosion

When the sensitivity of a feedback increases, for instance when adding feedback
about the progress of comparisons to edge coverage or when using context-sensitive
coverage, the fuzzer may save as interesting too many testcases. These testcases
will be never processed all, and the fuzzer saturates. An example of feedback that
easily leads to path explosion, as described in [95], is memory coverage, a feedback
that considers a testcase as interesting if the execution of the SUT uses a previously
unseen zone of memory.

Path coverage too easily leads to path explosion, and it is one of the most
prominent problems of techniques that use it like Symbolic Execution [13].

3.4.6 Scaling Implementations

A current limitation of available fuzzers implementation is scaling on multiple CPU
cores. System calls used by the fuzzer for various tasks are often not designed for
scaling, they use expensive locks in the kernel or performs unneeded slow tasks for
our purpose. The usage of Inter-Process Communications primitives offered by the
OS to communicate between the fuzzer and the target instrumented program is an
example.

A possible solution to this problem is embedding the fuzzer in the target applica-
tion itself, like LibFuzzer does, and use a custom kernel extension or hypervisor to
snapshot the program state in case of code that cannot be fuzzed stateless. Mocking
the syscalls performed by the target helps too, usually, this task is performed when
using an emulator to instrument the program.

Besides that, note that an exponential increase of the cores, as shown in [17],
increases only linearly the ability to find new coverage or new bugs.

26 3. The Art of Fuzzing

3.4.7 Hard Targets

The problem of instrumenting, executing, and feeding a SUT with the produced
testcases is not trivial in practice.

While traditional tools like AFL instruments programs that take their input as
a file, many applications and systems are not designed to behave in that way.

On the other hand, many programs can be adapted to consume a buffer produced
by the fuzzer, like when using a LibFuzzer harness, and others can be instrumented
to request pieces of input when needed to the fuzzer instead of using a single
buffer [93], but there are targets that consume their inputs in other ways that are
either not easy to handle or for which even execution or instrumentation is hard.

In the first case, a SUT of this kind is a complex system like a kernel or a multi-
process environment like IPC stacks. For instance, SyzKaller [94] provides inputs
to the kernel using a sequence of syscall invocations and fuzzing using a hypervisor
with incremental snapshots [8] can be used to test multiprocess environments that
share messages.

In the second case, the SUT is typically an embedded system. Often the execution
of firmware is possible only on specific hardware, which makes instrumentation and
hardening to catch silent faults impossible [70]. To address this problem, the code
can be executed on an emulated hardware [100] [77], with a high cost in terms of
development effort, or re-hosted [22] [65], a technique that transfers the context from
the target to an emulator and forwards the interactions with the hardware back to
the device only when needed.

3.5 Evaluation Criteria

The evaluation of fuzzing techniques is a matter currently under debate in the
community.

A recent work [54] analyzed some papers on fuzzing and stated what should
and should not be done to compare fuzzers. The number of testcases or reported
crashing inputs is not an evaluation metric, and using them is a very bad practice.
This work states that an effective metric is the number of triaged bugs triggered by
each fuzzer or the coverage over time as a good proxy.

However, this approach is limited and too general when we want to evaluate the
properties of fuzzers. A fuzzer that triggers less but unique bugs is good and, in
with the same spirit, a fuzzer that covers unique coverage is good too. Recently, this
metric of counting unique code blocks covered was introduced in FuzzBench [53].

3.5 Evaluation Criteria 27

Other metrics that are useful to evaluate fuzzers are which fuzzer reach a certain
coverage in less time [34] and the number of hits of each block for some randomly
sampled generated input, in order to evaluate the ability of a mutator to stress deep
paths [9].

29

Chapter 4

Methodology

Code coverage as feedback for Feedback-driven Fuzz Testing is a successful proxy to
approximate the program state during the exploration of the paths performed by
the fuzzer.

Edge Coverage-based Fuzzing found thousand and thousand of bugs in complex
applications in the lastest years [5], however, it suffers in exploring program states
that lead to bugs but that are not directly related to code coverage.

A naive solution may be a Fuzzing algorithm that uses code and variables or
memory values as feedback, but this quickly leads to path explosion, as shown
by [95].

In this chapter, we describe or technique that tries to cope with this problem
augmenting the feedback given by classical Edge Coverage-based Fuzzing using basic
blocks invariants violations to approximate the program state coverage.

4.1 Definitions

In this section, we introduce some needed definitions for the rest of the chapter, in
part according to [27].

Definition 21. A Program is a sequence of instructions.

In this dissertation, the SUT is a program.

Definition 22. The Memory State is a functionM(a)→ v that associates a Memory

Address a to a value.

Definition 23. The Static Single Assignment form (SSA) [87] is a type of
intermediate representation (IR) in compiler theory. SSA requires that every variable
is defined before each use and assigned only once.

30 4. Methodology

Without loss of generality, every program can be converted to SSA [25].

Example. Consider this simple C function that computes the maximum of two
integers:

int max(int x , int y) {

int m;
i f (x > y)
m = x ;

else
m = y ;

return m;

}

We can convert this simple program to SSA avoiding assigning two times the
variable m. At first glance, this seems impossible because its value depends on the
control flow, but we can use the Φ operator of SSA. This operator defines a new
variable choosing between two possible values depending on the control flow.
For our simple example, we can define three different SSA variables that represent m

in the two blocks of the if statement and in the terminal block that ends the
function.
The translation to an SSA pseudocode is then the following:

Function max(x, y)

if x > y then
m1 ← x

else
m2 ← y

end
m3 ← Φ(m1,m2)
return m3

Definition 24. The Load instruction v := M(a) assign to a variable the value
associated with the address a, that is a variable itself.

Definition 25. The Store instruction M ′ := Store(M,a, v) alter the codomain of
a memory state changing the value corresponding to a with v.

4.2 The Basic Block State 31

Definition 26. A Basic Block [1] is a straight-line sequence of instructions in
the program with only one entry point and only one exit.

Definition 27. The Control Flow is the order in which each individual basic block
is executed and evaluated. A Control Flow instruction is an instruction that
changes that order.

Definition 28. The set of the Live Variables at a basic block is the set of variables
that are used in the block or possibly used in any block reachable from it later in the
execution.

This set can be calculated using a backward analysis called Liveness Analysis [27].
Note that as in SSA a variable is used only once, redefinition is not an issue for our
definition of liveness.

Definition 29. A Program State is the triple (l, V,M), in which l is the program
point of the next instruction to be executed, V is the set of the live variables and M
is the current memory state.

In our simplified model of the computation in a program, this definition of
program state alone is enough to describe the data in the program.

Note that, if we have to observe a program state during the execution of a
program, we have to do it after the execution of the current instruction, because the
next instruction l is determined only after the evaluation of the instruction in case
of control transfer instructions.

4.2 The Basic Block State

Definition 30. The State of a basic block is the set of all the SSA variables
values used in the block.

Such states can be easily observed after the execution of the basic block because
SSA variables are assigned only once and so all the used values are still in the
variables.

We also define a family of functions that describe basic blocks.

Definition 31. Given a basic block X, the function BBX(VI ,MI)→ (VO,MO) is
the function that takes the set of live SSA variables VI and the memory state MI as
they are before the execution of X. BBX returns a new set VO of SSA variables that
are the variables used in X (note that VI ∩ VO is, in general, not empty) and the
memory state MO that is the memory state of the program after the execution of X.

32 4. Methodology

Following this notation, VO is thus the basic block state.
Always using the properties of SSA, we can derive this property of the basic

block state:

Theorem 1. The side effect in memory of a basic block, MO \MI , is a subset of
the basic block state VO.

Proof. In an SSA IR, only the store instruction can affect the memory state. A store
instruction s takes in input the memory location and the value v that has to be
stored and so if s is part of a basic block, v is a variable in the basic block state.

4.3 Program State Abstraction

Definition 32. Given an observed execution of a program, a Program Trace can be
described as a chain of BBX functions that take as input the output of the previous
function in the chain.

The order of the functions in the chain is given by the order of the executions
of the basic blocks in the observed execution of the program, which is the Control
Flow.

We can use the program trace to observe the transitions between program states,
and, using the following theorem, we can do it efficiently at the end of each block
instead of for each instruction.

Theorem 2. Given a program trace, the observation of each basic block state from
the outcome of each BBX function provides the same information about changes in
the program state of observing the values during each program state transition.

Proof. A transition in the program state causes a change in:

1. obviously, the program point;

2. in the set of live variables, if a new variable is defined or another is not live
anymore;

3. in the memory state, if the current instruction is a store;

We know, from Theorem 1, that the new values in the memory store are also
tracked in the basic block state.

Given that the control flow of a basic block is unique, if we observe the basic
block state after the execution of a block, we get that:

4.3 Program State Abstraction 33

1. each instruction was necessarily executed, so we know all the program points
in the transitions;

2. all the live variables for each instruction are still in the basic block state
because, by definition, the liveness as a basic block granularity, and the newly
defined variables are tracked because we observe them at the end of the block,
so after all the definitions;

3. the changes in the memory states are in the basic block state;

So, observing the changes in terms of values in the program states inside a basic
block at the end of the execution of such block is the same as doing it for each
instruction.

Note that for our theoretical model we are assuming a program without excep-
tional control flow, as usually these paths are not interesting to fuzz because related
to errors and our treatment is simplified.

For each block, this information is a valid approximation of observing each
individual program state.

Obviously, in a real-world implementation, logging a program state is not feasible
even for a small number of executed instructions due to the occupied space. Logging
the changes is a good trade-off and, as shown by Theorem 2, we can do it at the
end of each block.

Now consider the basic block state as a space on the SSA variables. We can
divide such space into subspaces using relations between the SSA variables.

These relations define hyperplanes in such space, and so also subspaces are
implicitly defined by these hyperplanes.

Example. Consider a basic block state with two variables, x and y. If we have,
for instance, the relations y > x− 8 and x < 100 we have that the following four
subspaces are defined: y > x− 8 ∧ x < 100, y > x− 8 ∧ x >= 100,
y <= x− 8∧ x < 100, y <= x− 8∧ x >= 100. If we violate one of the relations, we
are in another subspace than when we do not violate them. If we violate both, there
is another subspace.

A main idea is that if these relations describe coherently different partitions
of possible values of the variables (e.g. there is a bug if x%2 = 0) we can use the
produced subspaces as an abstraction of the program state in the basic block.

34 4. Methodology

4.4 Mining Subspaces

The relations between variables in a basic block state that delimitate the subspaces
have to be chosen carefully in order to have a meaningful division of state space.

As our goal is to find bugs, an effective definition of such relations can be as
Basic Block Invariants. This type of invariants, used in works like [23] [40], are
relations that theoretically always hold in a basic block and describe all the possible
values of a variable.

When one or more of such relations are violated, we are in a subspace that is
related to an incorrect program state reached in this basic block.

As the SSA form guarantees us that the input variables of a block are not
modified, we can avoid checking the pre-conditions of a Hoare Triple over the basic
block because the same invariants are also present in the post-conditions, that use
the basic block state. Note that in the basic block state the memory information
is only related to the changes made in the current block, so implicit constraints
between variables and memory values are missing.

This could be an effective technique to detect bugs, but mining these relations is
hard.

As described in 2.5.4, some approaches try to learn the invariants with static
analysis techniques, others try to learn the invariants from many executions traces
of the program under test.

The first approach may miss invariants and the second may generate relations in
which the violations are not related to a real bug, but is a local violation regards
the learned data from the corpus of the execution traces, a likely invariant.

These over-approximated invariants are however interesting even if the violations
maybe not be related to a bug. In the abstraction of the program state, a local
property is still interesting and the definition of subspaces based on this kind of
invariants is still a valid approximation.

Thus, we can exploit the coverage problem to learn relations about common
states of the variables and define the subspaces as spaces in which the variables
assume “unusual” values that may or may not be related to a bug.

4.5 An Invariants-based Coverage

Given the relations extracted using an execution-based invariants mining technique,
we can define a new type of feedback for Fuzz Testing that is based on the abstract
program state coverage defined by the subspaces of the basic block state.

4.6 Pruning Invariants 35

The control flow information is, like in traditional Coverage-guided Fuzzing,
approximated by the observed edges in the Control Flow Graph. This information
is augmented with the subspace in which the variables of the incoming block are
located.

So, a fuzzer saves an input not only when a new edge previously unseen is
executed, but also when the program explores a new subspace of the incoming basic
block state for that edge.

Example.
Consider the basic block from the previous example in Sec. 4.2. There are four
possible spaces defined by two invariants.
Assuming that the block can generate N possible branches, it can produce N ∗ 4
different feedback items for the fuzzer.
However, the observation of all the N ∗ 4 cases is an extreme case in which all the
likely invariants can be violated at the same time. In practice, some invariants may
never be violated when another is violated too, or never violated at all.

To check if a particular state violates the learned invariants for a block, this
technique has to emit these checks at the end of the blocks using code generation.

During the execution, the boolean information about the violation of a single
invariant is then propagated to the next executed block to report the edge information
augmented with the position of the observed values in the defined subspaces of the
incoming basic block.

4.6 Pruning Invariants

Variables in the basic block state are, however, not always related to each other and
this can produce useless likely invariants.

Besides, invariants that are impossible to violate, even in case of a fault, are not
relevant for our technique.

To cope with these two problems, which pollute our coverage and increase the
number of checks that must be generated — so increasing complexity and decreasing
the execution speed of the program under test — we devise some optimizations for
the invariants miner.

On the side of invariants checking, after the miner extracts the likely invariants,
we can avoid checking for duplicate invariants to speed up the execution.

36 4. Methodology

4.6.1 Comparability Calculation

Algorithm 4: Comparability set computation
Data: The IR function F containing all the IR instructions in that function
Result: The function C : Instructions −→ Comparability that relates an

instruction I to a comparability id
C : GetAllValues(F) −→ {ε}
for I in GetInstructions(F) do

if IsUnary(I) then
C, Id← MergeComparability(C, Id, I,GetOperand(I, 1))

else if IsCast(I) then
C, Id← MergeComparability(C, Id, I,GetOperand(I, 1))

else if IsBinary(I) then
C, Id← MergeComparability(C, Id, I,GetOperand(I, 1))
C, Id← MergeComparability(C, Id, I,GetOperand(I, 2))

else if IsGEP(I) then
C, Id← MergeComparability(C, Id, I,GetPointerOperand(I))
O1 ← GetIndexOperand(I, 1)
for O in GetIndexOperands(I) \O1 do

C, Id← MergeComparability(C, Id,O1, O)

else if IsLoad(I) then
C(I)← Id

Id← Id+ 1

return C

Firstly, we try to create independent sets of related variables in a IR function.
Variables that are not directly related but are related to a common third variable

are in the same set. These sets are called Comparability sets and can be encoded using
a function C : Instructions −→ Comparability ∪ {ε} that relates each instruction
in the function to a comparability set, identified by an ID in this case, or to default
comparability ε, that represents the comparability with all the other variables.

Algorithms 4 and 5 describe how we compute C.
Each variable is initially related to ε, then, the list of the instructions is walked

and if the current instruction is of a certain kind (e.g. a binary operator) each

4.6 Pruning Invariants 37

Algorithm 5: MergeComparability auxiliary algorithm
Data: The function C : Instructions −→ Comparability ∪ {ε}, the

progressive counter Id, the IR values V1 and V2

Result: The function C : Instructions −→ Comparability ∪ {ε} and the
progressive counter Id

if C(V1) 6= ε ∧ C(V2) = ε then
C(V2)← C(V1)

else if C(V1) = ε ∧ C(V2) 6= ε then
C(V1)← C(V2)

else if C(V1) 6= ε ∧ C(V2) 6= ε then
C(V1)← Id

C(V2)← Id

Id← Id+ 1

else
for V in Domain(C) do

if C(V) = C(V2) then
C(V)← C(V1)

return C, Id

variable is marked as related to the other. For instance, if the instruction is an
addition, the comparability set of the result is merged with the sets of the two
operands. The first time that a variable is hit, a new comparability id is assigned
instead of ε. Variables that are used in instructions that are not in the cases shown in
4 maintain the ε comparability, an over-approximation needed to not lose interesting
invariants.

The kinds of instructions that are considered in Alg. 4 are the unary instruc-
tions, operators with a single operand, binary instructions, with two operands, cast
instructions, that convert a value to another with a different type, load instructions,
and GEP instructions, that compute an address given a pointer and a set of indexes.

4.6.2 Inviolable Invariants

As our technique is based on violations of likely invariants, we want to avoid the
generation of invariants that are always inviolable, also in the case of a fault. Learning
basic invariants from the actual code of the program leads to such types of invariants.

38 4. Methodology

Example.
Consider a unsigned int variable in C. It will be mapped to many different IR
variables, but all of them will never be negative. An inviolable invariant is so that
these variables are always greater than or equal to 0. This is a useless check for the
invariants’ coverage, it will be never violated.

Value Range Analysis [47] is the technique that, if used with a conservative
approach, allows us to define bounds to integer variables that always hold.

Consider the definition of a constraint variable Y in one of the following ways:

• Y = [a, b]

• Y = Merge(X1, X2)

• Y = X1 +X2

• Y = X1 ∗X2

• Y = a ∗X + b

• Y = X u [a, b]

The Merge operator merges two variable names into one [26], u is the range
intersection.

These definitions can be easily extracted from a program in SSA form.
The Range Analysis objective, as explained in [83], is to solve a constraint system

with variables in the same form of Y and associate each variable to an integer range
(with +∞ and −∞).

So, with this technique applied to SSA variables used to produce invariants, we
can extract over-approximated ranges for each variable and exclude these invariants
from the learning output, as they always hold.

4.6.3 Deduplicate Invariants

Basic blocks defined in terms of a sequence of instructions in a program are, like
generic basic blocks defined in 2.5.2, nodes in the Control Flow Graph (CFG).

We can define dominance relations between blocks in the CFG as in [82].

Definition 33. A basic block A dominates a basic block B if every path in the CFG
from the root to B must go through A.

4.7 Corpus selection 39

Related to this definition, there are other definitions:

Definition 34. A basic block A strictly dominates a basic block B if A dominates
B and A 6= B.

Definition 35. A basic block A immediately dominates a basic block B if A
strictly dominates B but does not strictly dominate any other block that strictly
dominates B too.

The immediate dominator is unique and every block (except the root one) has
one.

Definition 36. The Dominator Tree is a tree defined with the basic blocks as nodes
and the edges as the immediately dominates relations.

As the immediately dominates relation is unique for the dominated block, the
dominator tree is a tree in which a block can immediately dominate multiple blocks
but can be immediately dominated only by one.

From a node, we can go backward in the dominator tree to find all the nodes
that strictly dominate such nodes.

We can make use of such definitions to develop a method to prune duplicate
invariants between blocks.

After the likely invariants phase, the produced checks have to be placed in the
code and the outcome of each check is the identifier of the invariant if violated. If
two IR variables are used in two blocks, the blocks will likely share an invariant.

With the dominator tree of a function, we can optimize this phase and avoid the
insertion of redundant checks.

The actual check is emitted only for the top-level (the nearest to root) dominator
that shares the invariant, and the outcome is propagated to the dominated blocks
without the need to execute again the check.

4.7 Corpus selection

We rely on a mining approach based on execution traces and this needs several test-
cases to generate different traces. Like for previous evolutionary fuzzing techniques,
the choice of the initial corpus is critical.

Unlike traditional CGF, in which indeed the input corpus affects by a lot the
performance of the fuzzer, an unwise choice of the initial corpus for our technique
can produce biased results, not just degrade performance.

40 4. Methodology

For instance, it is a common practice to download many files of a given file
format when testing a parser, but those files are almost all valid files. If we learn
likely invariants from the execution of a similar corpus, we will bias our invariants
on the validity of the file format and, in some cases, this can be a mistake because
we miss interesting partitions of the basic block states related to invalid inputs.

As our technique aims to improve the ability of a fuzzer to better explore the
code regions that were already reached executing the initial corpus, an interesting
choice is to mine invariants over the corpus of another fuzzer.

This is interesting because we have nowadays fuzzers that reach very good
coverage in a reasonable time (e.g. [11] [81]).

A derived problem is then when should we stop the first fuzzer and apply our
technique?

We can randomly select a time window, or wait that the fuzzer saturates in
coverage [45].

The saturation is a known problem in fuzzing, and doing the latter can help to
cope with this problem, but sometimes a fuzzer can get stuck in the opposite way:
it will continue to find new coverage and fail to deeply explore a single code region.
In this case, a random timeout is reasonable, maybe combined with the partial
instrumentation of some selected regions of the programs to avoid this problem.

4.8 Discussion

With the proposed feedback in this chapter, an edge can be registered as different
feedback values and introduce novelty more than a single time. To do that, we
divide the space described by the IR values used in the incoming basic block using
functions over these values. These functions must meaningfully represent interesting
properties of such space, and so we used learned likely invariants over the basic
block.

We devised a set of algorithms to reduce the number of generated invariants that
are redundant, that do not produce feedback or that relate unrelated variables.

The proposed technique aims to augment the feedback to use not only information
about the control flow but also about the entire program state to better explore the
possible states of the SUT during Fuzz Testing.

41

Chapter 5

Implementation

In this chapter, we provide an overview of the technologies used to implement our
technique, LLVM [56], Daikon [33], and AFL++ [37], the general architecture of
our implementation and some details about it.

5.1 The Low Level Virtual Machine Infrastructure

The Low Level Virtual Machine Infrastructure (LLVM) [56] is a compiler and
toolchain infrastructure designed for easy development of compiler frontends for
programming languages and backends for instruction set architectures.

The core of LLVM is its intermediate representation (IR) that is frontend-
agnostic, portable, and SSA-compliant. This IR allows compiler architects to
implement optimizations and code analysis passes at many stages of the compilation
pipeline in a completely language-independent flavor.

The generation of the machine code in LLVM can happen at compile-time, for
each module, at link-time, enabling a wide range of aggressive inter-procedural
optimization like arguments promotion [57], or even at run-time, using the LLVM
just-in-time engine.

The supported backends at the time of writing are almost all the most used
architectures, including X86, PowerPC, ARM, and SPARC, but also less known ones
like Hexagon or WebAssembly.

Since our techniques are designed to work at the IR level, we can build an
implementation that is architecture-independent.

LLVM has many available frontends for many programming languages too, like
C, Rust, Go, C++, and Ada, that emit IR for the backend after language-dependent
optimizations. The basic data types in the IR are integers and floats, and there are

42 5. Implementation

five built-in derived types: pointers, arrays, vectors, structures, and functions. If
the language targeted by the frontend supports more data types, they are expressed
in the IR as a combination of the standard IR datatypes.

The first-class citizen frontend of LLVM is Clang, the C, C++, Objective-C,
and Objective-C++ frontend.

We built our prototype for C/C++ programs, so we rely on Clang as frontend.
The structure of the intermediate representation is SSA, as written before, that

makes use of an infinite set of registers. The IR is also strongly typed and RISC-like.

Example.
An example of human-readable IR function is the following:

define i32 @max(i32 %x , i32 %y) {
entry :
%cmp = icmp sgt i32 %x , %y
br i1 %cmp , label %i f . t h e n , label %i f . e l s e

i f . t h e n :
br label %i f . e n d

i f . e l s e :
br label %i f . e n d

i f . e n d :
%m.0 = phi i32 [%x , %i f . t h e n] , [%y , %i f . e l s e]
ret i32 %m.0

}

It is the translation of the SSA pseudocode discussed in Sec. 4.1.
All the variables are assigned only once and the main difference with the SSA
pseudocode is the missing definition of the intermediate m variables. LLVM does
not support definitions of variables directly using another one because you can just
use the original variable (%x and %y in our case) instead.

The LLVM infrastructure is modular: you can write a so-called LLVM pass
that can manipulate the IR and it is invoked during various stages of the IR
optimization. Passes can be in-tree, modifying the source tree of LLVM itself like
the AddressSanitizer pass, or out-of-tree, that are shared object loaded at runtime.

LLVM incorporates also a debugger, a C++ standard library implementation,
and a linker to enable link-time optimizations.

5.2 The Daikon invariant detector 43

5.2 The Daikon invariant detector

Daikon is a dynamic miner of likely invariants, previously introduced in 2.5.4.
It relies on execution traces that are in a language-independent form, enabling

the tool to operate on data produced by different tracers, most notably the Java
tracer and the C tracer based on Valgrind [71], and even fictional traces that are
not outcomes of the execution of a program.

It requires a declaration (decls) file that describes the traced variables and
one or more data trace (dtrace) files that report the actual values of the traced
variables.

In both formats variables are grouped by the program point in which they are
observed, typically function enter and exit.

The pattern for a program point entry in the declaration file is1:

ppt <ppt-name>

<ppt-info>

<ppt-info>

...

variable <name-1>

<variable-info>

<variable-info>

...

variable <name-2>

...

The ppt-name encodes the name plus its type, for instance name:::ENTER for
variables when entering a function, name:::EXIT for variables when exiting a function,
or name:::OBJECT for object fields. ppt-info encodes properties such as if a method
is private and the parent program point in the dataflow hierarchy (e.g. an object
program point is the parent of all the method program points of such object because
a method can access the fields).

The variable names must be unique inside the program point, and the variable-info

holds information about the data type of the variable, the comparability (Sec. 4.6.1),
the bounds if any, if it is a function parameter and other generic flags.

In a data trace, the corresponding program point entry has the following format:

1https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#

Program-point-declarations

https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#Program-point-declarations
https://plse.cs.washington.edu/daikon/download/doc/developer/File-formats.html#Program-point-declarations

44 5. Implementation

<program-point-name>

this_invocation_nonce

<nonce-string>

<var-name-1>

<var-value-1>

<var-modified-1>

<var-name2>

<var-value-2>

<var-modified-2>

...

The nonce is a progressive number to define a total order between such entries.
The logged values for each variable are followed by the var-modified field, which
tells if the variable was modified since the last time it was logged.

5.3 The AFL++ fuzzing framework

American Fuzzy Lop ++ (AFL++) [37] is a recent fork of the popular coverage-guided
fuzzer AFL, that is not improved anymore with novel features from 2017.

AFL++ incorporates and sometimes reimplements some of the latest relevant
research in Fuzz Testing, such as [64], [11] and [20].

It supports many different instrumentation backends to extract coverage infor-
mation from the target, for both compiler-based instrumentation and binary-only
instrumentation.

To instrument a program during the compilation pipeline, AFL++ ships a GCC
plugin and a set of LLVM passes. For binary-only targets, AFL++ has two Dynamic
Binary Translation backends that instrument the code during the recompilation stage
of the JIT, one based on QEMU [14] and the other based on Unicorn Engine [72].

It supports different types of code coverage, such as standard edge coverage,
context-sensitive edge coverage, ngram coverage, and more. The standard edge
coverage is logged in a shared map (__afl_area_ptr) used as an observation channel.
The number of hits for each edge is logged too.

The classic instrumentation, inherited from AFL, inserts a snippet similar to
the following C code at each basic block:

void afl_maybe_log (unsigned cur_loc) {

stat ic __thread unsigned prev_loc = 0 ;

5.4 The InvsCov pipeline 45

__afl_area_ptr [cur_loc ^ prev_loc]++;
prev_loc = cur_loc >> 1 ;

}

When using the compiler wrapper that uses the LLVM passes to instrument the
code, the equivalent of this code is inserted inline at the IR level.

The cur_loc parameter is generated at compilation time and identifies the basic
block while prev_loc maintains the information about the last executed block. So
the shared map index cur_loc ^ prev_loc is related to the currently executed
edge.

5.4 The InvsCov pipeline

We implemented our technique in a prototype called InvsCov that stands for
Invariants Coverage.

The InvsCov pipeline is composed of several stages:

1. Dumper compilation: a first version of the program that dumps variables
values is compiled;

2. Online learning: the dumper program is executed for each input in the corpus
and Daikon performs online learning of the likely invariants;

3. Checks generation: the output of Daikon is processed and an object file with
all the checks for each invariant is produced;

4. Target compilation: a second version of the program is compiled instrumenting
the blocks with the classic AFL instrumentation plus the calls to the checks
(generated C functions) needed for the invariants coverage;

5.4.1 Dumper compilation

The dumper instrumentation is handled by an LLVM pass on functions and a
runtime object. This pass is the one that implements Algorithm 5 (Sec. 4.6.1) and
also uses Range Analysis to learn the bounds of the integer IR values, when possible.

As an implementation choice, in this pass we reduced the number of IR values
considered as variables for the invariants miner if at least one of the following
properties hold:

46 5. Implementation

• the value can be directly connected to a local variable in the source code using
debug symbols;

• the value is a not a constant index of the pointer operand of a GetElementPtr
instruction 2;

• the value is related to a Load or Store instruction (both pointers and values);

• the value is the return value of the function;

During the compilation, the pass dumps the information about program points
and variables, such as type, comparability, and bounds, in a JSON file for each
module. Then, each file is processed and merged to produce the declaration file for
Daikon.

When executed, the dumper binary outputs a dtrace file related to the execution.

Example.
Consider this example function in C language:

int i s g r e a t e r (int x , int y) {

i f (x > y)
return 1 ;

return 0 ;

}

Converted to LLVM IR using Clang it is:

define dso_loca l i32 @isg r ea t e r (i32 %x , i32 %y)
local_unnamed_addr #0 ! dbg !16 {

entry :
ca l l void @llvm.dbg.va lue (metadata i32 %x , metadata ! 2 0 ,

metadata ! DIExpress ion ()) , ! dbg !22
ca l l void @llvm.dbg.va lue (metadata i32 %y , metadata ! 2 1 ,

metadata ! DIExpress ion ()) , ! dbg !22
%cmp = icmp sgt i32 %x , %y , ! dbg !23
%. = zext i1 %cmp to i32 , ! dbg !22
ret i32 %. , ! dbg !25

}

2https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html

https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html

5.4 The InvsCov pipeline 47

The l l vm.dbg .va lue intrinsic calls for the values %x and %y tell that these values
are related to some variables in the source code, x and y.
In this small example, the instrumented values are %x and %y, because they are
related to the source code variables, and %., because it is the return value.
The program points in which each variable is logged are basic blocks and not
functions. This is trivial to achieve just generating the decl and the dtrace files like
if each basic block is a separate function, logging two times the variables at the end
of the block to comply with the Daikon formats that need an ENTER and at least
one EXIT.

5.4.2 Online learning

We patched Daikon version 5.8.3 to enable online learning with the dumper binary.
Logging all the dtrace files produced by the dumper binary for each input can be
expensive in terms of disk space. Instead, we run the dumper inside Daikon and
process the outcome on the fly.

After the learning, the invariants are saved as textual output in order to be
processed in the next stage.

5.4.3 Checks generation

The file with the invariants that are generated by Daikon is then parsed in this
stage.

This file is textual, and for each program point lists the relations, that are
expressions over one or more variables.

A simple one can be just LOC_x > 1 but more complex invariants are possible,
such as LOC_x^2 + 3 * LOC_y - LOC_z >= 0.

We parse this textual representation using regular expressions to locale the
variable names and substitute them with C variables when generating C functions
for each check.

The generated function is named __daikon_constr_ID where ID is a unique
number identifying the invariant.

The return value is the ID shifted by 1 if the invariant is violated, 0 otherwise.

Example.
A generated function looks like the following C snippet:

48 5. Implementation

uint32_t __daikon_constr_123 (int32_t v0) {

i f (! (v0 > 1))
return 123 << 1 ;

return 0 ;

}

In this case, the ID is 123.

The script that generates the code creates also a JSON file describing each
generated function for the next stage.

5.4.4 Target compilation

The final binary, ready to be fuzzed by AFL++, is compiled using an LLVM pass
that takes into account the outcome of the checks generation phase.

The LLVM values involved in the invariants are retrieved using their name that
is the same between the dumper pass and the present one.

In this pass, the prev_loc variable of the AFL++ instrumentation that tracks
the incoming block when logging an edge is XOR-ed with the return value of each
check function. When the invariant is not violated, the function returns 0, which
results in normal edge coverage.

At the end of each block, the inserted instrumentation looks like the one in the
following pseudocode:

__afl_area_ptr [cur_loc ^ prev_loc]++;
prev_loc = cur_loc >> 1 ;
prev_loc ^= __daikon_constr_123 (va r i ab l e 1) ;
prev_loc ^= __daikon_constr_321 (var i ab l e2 , va r i ab l e 3) ;
. . .

Whenever an invariant is shared between two blocks and one dominates the
other, the dominated block does not call again the function that performs the check,
but directly reuses the outcome of the previously called function in the dominator.

All the instrumentation code inserted by the pass is marked with the nosanitize

metadata to avoid to be instrumented by sanitizers.

5.4 The InvsCov pipeline 49

Example.
At the end of the pipeline, the i s g r e a t e r function used in the previous examples,
is compiled to LLVM IR as follows:

define dso_loca l i32 @isg r ea t e r (i32 %x , i32 %y)
local_unnamed_addr #0 ! dbg ! 7 {

entry :
: AFL++ inst rumentat ion
%0 = load i32 , i32∗ @__afl_prev_loc , ! dbg ! 14 , ! n o s an i t i z e ! 2
%1 = load i8 ∗ , i8 ∗∗ @__afl_area_ptr , ! dbg ! 14 , ! n o s an i t i z e ! 2
%2 = xor i32 %0, 2620 , ! dbg !14
%3 = getelementptr i8 , i8 ∗ %1, i32 %2, ! dbg !14
%4 = load i8 , i8 ∗ %3, ! dbg ! 14 , ! n o s an i t i z e ! 2
%5 = add i8 %4, 1 , ! dbg !14
%6 = icmp eq i8 %5, 0 , ! dbg !14
%7 = zext i1 %6 to i8 , ! dbg !14
%8 = add i8 %5, %7, ! dbg !14
store i8 %8, i8 ∗ %3, ! dbg ! 14 , ! n o s an i t i z e ! 2
store i32 1310 , i32∗ @__afl_prev_loc , ! dbg !14
; a c t ua l i s g r e a t e r code
ca l l void @llvm.dbg.va lue (metadata i32 %x , metadata ! 1 2 ,

metadata ! DIExpress ion ()) , ! dbg !14
ca l l void @llvm.dbg.va lue (metadata i32 %y , metadata ! 1 3 ,

metadata ! DIExpress ion ()) , ! dbg !14
%cmp = icmp sgt i32 %x , %y , ! dbg !15
%. = zext i1 %cmp to i32 , ! dbg !14
; check i n va r i an t and update prev_loc
%9 = ca l l i32 @__daikon_constr_1 (i32 %.) , ! dbg !17
%10 = load i32 , i32∗ @__afl_prev_loc , ! dbg ! 17 , ! n o s an i t i z e ! 2
%11 = xor i32 %10, %9, ! dbg !17
store i32 %11, i32∗ @__afl_prev_loc , ! dbg ! 17 , ! n o s an i t i z e ! 2
ret i32 %. , ! dbg !17

}

There is a single invariant, checked by __daikon_constr_1, and the return value
of this function is XOR-ed with prev_loc.

51

Chapter 6

Evaluation

In this chapter, we present the results of a preliminary experimental investigation of
our prototype InvsCov. We choose as metrics the heuristically triaged bugs in a
given time window to evaluate the ability to catch faults, and executions per second
to evaluate the overhead.

6.1 Setup and Dataset

All the experiments in this chapter were run on an x86_64 machine with the Intel(R)
Xeon(R) Platinum 8160 CPU at 2.10GHz and 32 GiB of RAM. The operating system
used was Ubuntu 18.04 with the kernel version 4.15.

We selected a set of real-world applications to evaluate our prototype InvsCov.
Table 6.1 lists the chosen programs. In the first part there are real-world programs,
often old versions, that may contain bugs with a high probability. Most of them
were part of evaluations in previous works from the literature (e.g. [84] [67]). In the
second part, there are targets with known vulnerabilities taken from Fuzzer Test
Suite [44], which are old versions of real-world programs too.

We report in Table 6.1 the list of the programs, their versions, and the sanitizers
used during the compilation of the subjects. The missing usage of UBSan on some
programs is due to shallow bugs in those subjects that make them crash even with
simple valid inputs. In this case, we opted to remove the sanitizer to allow the usage
of the program in our evaluation.

In Table 6.2 we list the command line parameters used to run the programs.
The subjects from Fuzzer Test Suite are not in this table because all of them use a
LibFuzzer harness from OSS-Fuzz.

As described in Sec. 4.7, the choice of the initial corpus for InvsCov not trivial.

52 6. Evaluation

Program Version Sanitizers
jasper 2.0.16 ASan, UBSan

autotrace 4333e37d5040881b19c2e1dad221f8e988419932 ASan, UBSan
cflow 8a75c3721fd38f8d278cd71fb3682ead1497bb46 ASan, UBSan

catppt (catdoc) 0.95 ASan, UBSan
xls2csv (catdoc) 0.95 ASan, UBSan

pdf2cairo (poppler) 53368f1717e88e40fe65d27e919c9abca11beac3 ASan, UBSan
potrace 1.16 ASan, UBSan
pspp 53d339111a9f51561cfccc65764874cdf54e501a ASan
exiv2 356f8627371e10cb8719eba3c45789e67420b10a ASan, UBSan

sndfile (libsndfile) 2ccb23fe724d1d946b4e0c51b791cc655da6962e ASan, UBSan
lcms f9d75ccef0b54c9f4167d95088d4727985133c52 ASan, UBSan
re2 499ef7eff7455ce9c9fae86111d4a77b6ac335de ASan, UBSan

boringssl 894a47df2423f0d2b6be57e6d90f2bea88213382 ASan, UBSan
guetzli 9afd0bbb7db0bd3a50226845f0f6c36f14933b6b ASan, UBSan
libxml2 v2.9.2 ASan, UBSan
woff2 9476664fd6931ea6ec532c94b816d8fbbe3aed90 ASan

libarchive 51d7afd3644fdad725dd8faa7606b864fd125f88 ASan
pcre2 183 ASan, UBSan

Table 6.1. Target programs versions and sanitizers.

Program Command line
jasper -f @@ -t jp2 -T mif -F /dev/null
cflow –no-main @@
catppt @@
xls2csv @@
pdf2cairo -tiff @@ out
potrace -b pdf -c -q @@ -o /dev/null
pspp -O format=txt -o /dev/null -b @@
exiv2 - (OSS-Fuzz harness)
sndfile –cart –instrument –broadcast @@

Table 6.2. Command line used to run the target programs.

We opted to simply set 12 hours as the time window and run AFL to produce
the corpus. This choice, of course, is not optimal in general but allows us to evaluate

6.2 Efficiency in finding faults 53

the technique on a large set of programs, reducing the manual work needed to
observe when a fuzzer saturates for every single target. We leave the evaluation with
incremental fuzzing after saturation with InvsCov to future work.

All the benchmarks in this chapter are run with a time window of 48 hours and
each experiment was repeated 3 times. The reported numbers are the median values.

6.2 Efficiency in finding faults

Program AFL++ bugs AFL++InvsCov bugs Intersection
jasper 27 28 20

autotrace 30 28 28
cflow 6 6 4
catppt 4 8 4
xls2csv 19 29 18
pdf2cairo 25 27 21
potrace 1 0 0
pspp 34 17 12
exiv2 45 50 34
sndfile 18 21 18
lcms 0 1 0
re2 1 0 0

boringssl 6 6 6
guetzli 3 1 1
libxml2 16 17 13
woff2 2 3 2

libarchive 0 0 0
pcre2 104 122 57
Total 341 364 238

Table 6.3. Triaged bugs found during the 48h experiments.

In this section, we evaluate the ability of InvsCov to find more or different bugs
than the baseline AFL++ in a given time window of 48 hours.

As the number of reported crashes by the two fuzzers is high, we opted to
automatically triage the crashes to the number of bugs heuristically using the hash
of the call stack 1 registered when the program crashes. While this is a less sound

1The hash represents the sequence of functions that are concurrently active on the run-time

54 6. Evaluation

metric than counting ground-truth bugs (e.g. [48]), it was used in recent past works
like [67] successfully.

To be more sound, we removed the addresses belonging to the C and the C++
standard libraries from the call stacks to reduce false positives.

In Table 6.3 we report the number of uncovered bugs for AFL++ and AFL++

with InvsCov. We report the intersection between the sets too, as a fuzzer that
finds less but different bugs than another are still interesting.

6.3 Performance overhead

lcms re2 boringssl guetzli libxml2 woff2 libarchive pcre2
0

1000

2000

3000

4000

5000

6000

7000

Ex
ec

ut
io

ns
 /

se
co

nd
s

AFL++
AFL++ InvsCov

Figure 6.1. Comparison in medium speed over a 48h experiment.

In this section, we evaluate the performance overhead in terms of speed.
We compare the medium speed registered by the fuzzer (executions per second)

for an entire 48-hour run. The chosen subjects are the targets used in Sec. 6.2 that
come from Fuzzer Test Suite. These targets use the harnesses from OSS-Fuzz and so
AFL++ can execute them in Persistent Mode, allowing a more sound comparison in
terms of speed without the overhead of fork() operations.

stack at a given moment [28].

6.4 Discussion 55

In Figure 6.1 the medium executions per second of AFL++ and AFL++InvsCov
are compared. The gap is almost never more than 2x, even smaller for targets with
medium speed (2000 execs/sec).

The medium overhead over the set of benchmarks is 1.62x.

6.4 Discussion

From the evaluation of our technique for the ability to trigger faults, it appears
that our technique performs well when the coverage produced by the initial corpus
already covers most of the program. In targets like potrace, our technique fails to
uncover a bug that is in a code region not covered by the initial corpus. On other
targets, such as pcre2, InvsCov performs well and uncovers more and different
faults than vanilla AFL++.

This highlights that the limitation in speed showed in the second part of the
evaluation, can sometimes decrease the performance in uncovering bugs in new
program points. This can be considered a limitation, or not because the purpose
of the technique is not to be a replacement for Coverage-guided Fuzzing, but an
incremental step instead. The problem can be addressed with a wiser choice of the
initial corpus, taking the testcases of an already saturated fuzzer such as AFL++

itself.
The overall results suggest that InvsCov improves the state-of-the-art of Fuzz

Testing in terms of findings faults especially when the code is already explored by
the initial corpus.

57

Chapter 7

Conclusion

In this thesis, we introduced a new feedback for Feedback-driven Fuzz Testing in order
to approximate the program state coverage better than traditional Coverage-guided
Fuzzing.

Reaching a program point does not guarantee the discovery of a fault in such a
portion of code: we proposed to distinguish the same program point in the registered
coverage if the values in the program state are unusual using likely invariants.

The likely invariants are mined local constraints that, if violated, may uncover
the presence of a bug or a local unusual state. In both cases, they define a meaningful
division of the possible values used in the corresponding program point.

In our technique, we learn invariants at the granularity of basic blocks to define
a feedback that combines edge coverage and invariants violations.

In this way, we were able to augment the sensitivity of the coverage feedback of
Feedback-driven Guided Fuzzing taking into account data and not only code without
the typical path explosion issue that characterizes coverage types based on data
tracking.

The developed prototype, InvsCov, extends the compilation pipeline of LLVM
to produce binaries that can be used to learn invariants and to record invariants
and code coverage for AFL++.

We showed that the prototype works on a set of real-world benchmarks producing
fully functional binaries that can be easily fuzzed uncovering more of different types
of faults than vanilla AFL++ with a reasonable performance overhead.

Based on our results, in general, we can devise that augmenting the sensitivity
of a feedback, automatically and not just manually for a small set of program points
and variables, with a sane amount of useful information can improve the search
algorithm of the fuzzer.

58 7. Conclusion

7.1 Future directions

We foresee two directions of improvement: one is technical, the other concerns the
implementation.

Firstly, our methodology can grow to learn the invariants on-demand during
the run of the fuzzer. Instead of being a preprocessing step before the run of the
fuzzer, we can adapt it to modify the target program on-the-fly with discovered
likely invariants. In this way, we can use our technique on newly discovered code
too, and not only on program points that are already covered by the execution of
the input corpus.

Another avenue for technical improvement is the tracking of the side effect in
the memory state. We employ such abstraction to avoid logging each value in the
memory state, which would be an impossible solution in practice. In the future, we
can augment such a method to not only track the values in the basic block state,
which contains the side effects in memory, but also other interesting values that
are implicitly related to the program state but not directly used in the block. For
instance, consider the size of a buffer in the heap that is not used as a variable in a
basic block that simply performs access to such buffer. The buffer size is still an
interesting value to track because it has an indirect relationship with the memory
address used in the block.

On the implementation side, we should replace the Daikon invariant detector
with a more performant engine that uses the GPU. Daikon is a mono thread
program in Java that runs on the CPU, while its algorithm can be reimplemented
to exploit the parallelization opportunities from modern machines.

Another future direction is the implementation of InvsCov on the IR of an
emulator. The LLVM implementation rarely uses information about the source code
and so our technique, that does not depend on the particular frontend language, can
be easily reimplemented as an instrumentation pass of a JIT compiler of a dynamic
binary translator like QEMU.

59

Bibliography

[1] Basic Blocks (GNU Compiler Collection (GCC) Internals). [Online; accessed
10-July-2020]. Available from: https://gcc.gnu.org/onlinedocs/gccint/

Basic-Blocks.html.

[2] IEEE Guide for Software Verification and Validation Plans. IEEE Std 1059-
1993, (1994), 1.

[3] Circumventing Fuzzing Roadblocks with Compiler Transformations.
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-

roadblocks-with-compiler-transformations/ (2016). [Online; accessed
10-Sep-2020].

[4] ISO/IEC/IEEE International Standard - Systems and software engineering –
Vocabulary. C/S2ESC - Software & Systems Engineering Standards Committee,
(2017).

[5] Google OSS-Fuzz: continuous fuzzing of open source software. https://

github.com/google/oss-fuzz (2019).

[6] Allen, F. E. Control flow analysis. SIGPLAN Not., 5 (1970), 1.
Available from: https://doi.org/10.1145/390013.808479, doi:10.1145/

390013.808479.

[7] Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi,
A., and Teuchert, D. Nautilus: Fishing for deep bugs with grammars. In
NDSS (2019).

[8] Aschermann, C. and Schumilo, S. What the fuzz (2019). [Online; accessed
10. Sep. 2020]. Available from: https://hexgolems.com/talks/blackhat_

19.pdf.

[9] Aschermann, C. and Schumilo, S. On Measuring and Visualizing
Fuzzer Performance (2020). [Online; accessed 1. Sep. 2020]. Available

https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://gcc.gnu.org/onlinedocs/gccint/Basic-Blocks.html
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://doi.org/10.1145/390013.808479
http://dx.doi.org/10.1145/390013.808479
http://dx.doi.org/10.1145/390013.808479
https://hexgolems.com/talks/blackhat_19.pdf
https://hexgolems.com/talks/blackhat_19.pdf

60 Bibliography

from: https://hexgolems.com/2020/08/on-measuring-and-visualizing-

fuzzer-performance/.

[10] Aschermann, C., Schumilo, S., Abbasi, A., and Holz, T. Ijon: Exploring
deep state spaces via fuzzing. In IEEE Symposium on Security and Privacy
(Oakland) (2020).

[11] Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., and Holz,
T. REDQUEEN: fuzzing with input-to-state correspondence. In 26th Annual
Network and Distributed System Security Symposium, NDSS (2019). Available
from: https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-

with-input-to-state-correspondence/.

[12] Aumasson, J.-P. and Romailler, Y. Automated testing of crypto software
using differential fuzzing. Black Hat USA, Jul, (2017).

[13] Baldoni, R., Coppa, E., D’Elia, D. C., Demetrescu, C., and Finocchi,
I. A survey of symbolic execution techniques. ACM Computing Surveys,
51 (2018), 50:1. Available from: http://doi.acm.org/10.1145/3182657,
doi:10.1145/3182657.

[14] Bellard, F. Qemu, a fast and portable dynamic translator. In Proceedings
of the Annual Conference on USENIX Annual Technical Conference, ATEC
’05, pp. 41–41. USENIX Association, Berkeley, CA, USA (2005). Available
from: http://dl.acm.org/citation.cfm?id=1247360.1247401.

[15] Blanchet, B. Introduction to abstract interpretation. (2002).

[16] Blazytko, T., Aschermann, C., Schlögel, M., Abbasi, A., Schumilo,
S., Wörner, S., and Holz, T. GRIMOIRE: Synthesizing structure while
fuzzing. In 28th USENIX Security Symposium (USENIX Security 19), pp. 1985–
2002. USENIX Association, Santa Clara, CA (2019). ISBN 978-1-939133-06-9.
Available from: https://www.usenix.org/conference/usenixsecurity19/

presentation/blazytko.

[17] Böhme, M. and Falk, B. Fuzzing: On the exponential cost of vulnera-
bility discovery. In Proceedings of the 14th Joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE, pp. 1–12 (2020).

[18] Böhme, M., Manès, V., and Cha, S. K. Boosting fuzzer efficiency: An
information theoretic perspective. In Proceedings of the 14th Joint meeting

https://hexgolems.com/2020/08/on-measuring-and-visualizing-fuzzer-performance/
https://hexgolems.com/2020/08/on-measuring-and-visualizing-fuzzer-performance/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
https://www.ndss-symposium.org/ndss-paper/redqueen-fuzzing-with-input-to-state-correspondence/
http://doi.acm.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko
https://www.usenix.org/conference/usenixsecurity19/presentation/blazytko

Bibliography 61

of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE, pp. 1–11
(2020).

[19] Böhme, M. and Paul, S. A probabilistic analysis of the efficiency of
automated software testing. IEEE Transactions on Software Engineering, 42
(2016), 345.

[20] Böhme, M., Pham, V.-T., and Roychoudhury, A. Coverage-based
greybox fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pp. 1032–
1043. Association for Computing Machinery, New York, NY, USA (2016).
ISBN 9781450341394. Available from: https://doi.org/10.1145/2976749.

2978428, doi:10.1145/2976749.2978428.

[21] Claessen, K. and Hughes, J. Quickcheck: A lightweight tool for random
testing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN In-
ternational Conference on Functional Programming, ICFP ’00, pp. 268–279.
Association for Computing Machinery, New York, NY, USA (2000). ISBN
1581132026. Available from: https://doi.org/10.1145/351240.351266,
doi:10.1145/351240.351266.

[22] Clements, A. A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz,
D., Kruegel, C., Vigna, G., Bagchi, S., and Payer, M. Halucinator:
Firmware re-hosting through abstraction layer emulation. In 29th USENIX
Security Symposium (USENIX Security 20), pp. 1201–1218. USENIX Associa-
tion (2020). ISBN 978-1-939133-17-5. Available from: https://www.usenix.

org/conference/usenixsecurity20/presentation/clements.

[23] Cova, M., Balzarotti, D., Felmetsger, V., and Vigna, G. Swaddler:
An approach for the anomaly-based detection of state violations in web ap-
plications. In Proceedings of the 10th International Symposium on Recent
Advances in Intrusion Detection (RAID), pp. 63–86. Queensland, Australia
(2007).

[24] Csallner, C. and Smaragdakis, Y. Check’n’crash: combining static
checking and testing. In Proceedings of the 27th international conference on
Software engineering, pp. 422–431 (2005).

[25] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck,
F. K. Efficiently computing static single assignment form and the control depen-

https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
http://dx.doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/351240.351266
http://dx.doi.org/10.1145/351240.351266
https://www.usenix.org/conference/usenixsecurity20/presentation/clements
https://www.usenix.org/conference/usenixsecurity20/presentation/clements

62 Bibliography

dence graph. ACM Trans. Program. Lang. Syst., 13 (1991), 451. Available from:
https://doi.org/10.1145/115372.115320, doi:10.1145/115372.115320.

[26] Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck,
F. K. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13 (1991), 451. Available from:
https://doi.org/10.1145/115372.115320, doi:10.1145/115372.115320.

[27] D’Elia, D. C. and Demetrescu, C. On-stack replacement, distilled.
SIGPLAN Not., 53 (2018), 166. Available from: https://doi.org/10.1145/

3296979.3192396, doi:10.1145/3296979.3192396.

[28] D’Elia, D. C., Demetrescu, C., and Finocchi, I. Mining hot
calling contexts in small space. Software: Practice and Experience, 46
(2016), 1131. Available from: https://onlinelibrary.wiley.com/doi/

abs/10.1002/spe.2348, arXiv:https://onlinelibrary.wiley.com/doi/

pdf/10.1002/spe.2348, doi:10.1002/spe.2348.

[29] Dinesh, S., Burow, N., Xu, D., and Payer, M. Retrowrite: Statically
instrumenting cots binaries for fuzzing and sanitization. In IEEE S&P 2020
(2020).

[30] Eddington, M. Peach fuzzing platform. https://web.archive.org/

web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.

html. [Online; accessed 10-Sep-2020].

[31] Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D. Dy-
namically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27 (2001), 99.

[32] Ernst, M. D. and Notkin, D. Dynamically Discovering Likely Program
Invariants. Ph.D. thesis, USA (2000). AAI9983472.

[33] Ernst, M. D., Perkins, J. H., Guo, P. J., McCamant, S., Pacheco, C.,
Tschantz, M. S., and Xiao, C. The Daikon system for dynamic detection
of likely invariants. Science of Computer Programming, 69 (2007), 35.

[34] Falk, B. Brandon Falk @gamozolabs FuzzBench feedback (2020). [On-
line; accessed 1. Sep. 2020]. Available from: https://github.com/google/

fuzzbench/issues/654.

https://doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
http://dx.doi.org/10.1145/115372.115320
https://doi.org/10.1145/3296979.3192396
https://doi.org/10.1145/3296979.3192396
http://dx.doi.org/10.1145/3296979.3192396
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2348
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2348
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2348
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2348
http://dx.doi.org/10.1002/spe.2348
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://web.archive.org/web/20180621074520/http://community.peachfuzzer.com/WhatIsPeach.html
https://github.com/google/fuzzbench/issues/654
https://github.com/google/fuzzbench/issues/654

Bibliography 63

[35] Fioraldi, A., D’Elia, D. C., and Coppa, E. WEIZZ: Automatic grey-
box fuzzing for structured binary formats. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2020. Association for Computing Machinery, New York, NY, USA (2020).
ISBN 9781450380089. Available from: https://doi.org/10.1145/3395363.

3397372, doi:10.1145/3395363.3397372.

[36] Fioraldi, A., D’Elia, D. C., and Querzoni, L. Fuzzing binaries for mem-
ory safety errors with QASan. In 2020 IEEE Secure Development Conference
(SecDev) (2020).

[37] Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. AFL++:
Combining incremental steps of fuzzing research. In 14th USENIX Workshop
on Offensive Technologies (WOOT 20). USENIX Association (2020).

[38] Floyd, R. W. Assigning meanings to programs. In Program Verification, pp.
65–81. Springer (1993).

[39] Frighetto, A. Fuzzing binaries with llvm’s libfuzzer and rev.ng (2020).
[Online; accessed 20. Sep. 2020]. Available from: https://rev.ng/blog/page-

1.html.

[40] Giuffrida, C., Cavallaro, L., and Tanenbaum, A. Practical automated
vulnerability monitoring using program state invariants. In Proceedings of
the 43rd Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, pp. 1–12. IEEE CS (2013). ISBN 978-1-4673-6471-3. doi:

10.1109/DSN.2013.6575318.

[41] Godefroid, P. Random testing for security: blackbox vs. whitebox fuzzing.
In Proceedings of the 2nd international workshop on Random testing: co-located
with the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), pp. 1–1 (2007).

[42] Godefroid, P., Levin, M. Y., and Molnar, D. Automated whitebox
fuzz testing (2008). Available from: https://www.microsoft.com/en-us/

research/publication/automated-whitebox-fuzz-testing/.

[43] Godefroid, P., Peleg, H., and Singh, R. Learn&fuzz: Machine learning
for input fuzzing. In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, pp. 50–59. IEEE

https://doi.org/10.1145/3395363.3397372
https://doi.org/10.1145/3395363.3397372
http://dx.doi.org/10.1145/3395363.3397372
https://rev.ng/blog/page-1.html
https://rev.ng/blog/page-1.html
http://dx.doi.org/10.1109/DSN.2013.6575318
http://dx.doi.org/10.1109/DSN.2013.6575318
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/

64 Bibliography

Press, Piscataway, NJ, USA (2017). ISBN 978-1-5386-2684-9. Available from:
http://dl.acm.org/citation.cfm?id=3155562.3155573.

[44] Google. Fuzzer test suite. [Online; accessed 1. Sep. 2020]. Available from:
https://github.com/google/fuzzer-test-suite.

[45] Groce, A. and Regehr, J. The Saturation Effect in Fuzzing. https:

//blog.regehr.org/archives/1796.

[46] Hangal, S. and Lam, M. S. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pp. 291–301. Association for Computing
Machinery, New York, NY, USA (2002). ISBN 158113472X. Available from:
https://doi.org/10.1145/581339.581377, doi:10.1145/581339.581377.

[47] Harrison, W. Compiler analysis of the value ranges for variables. IEEE
Transactions on Software Engineering, 3 (1977), 243. doi:10.1109/TSE.1977.

231133.

[48] Hazimeh, A., Herrera, A., and Payer, M. Magma: A ground-truth
fuzzing benchmark. (2020). arXiv:2009.01120.

[49] Hoare, C. A. Proof of correctness of data representations. Acta Inf., 1
(1972), 271. Available from: https://doi.org/10.1007/BF00289507, doi:

10.1007/BF00289507.

[50] Hoare, C. A. R. An Axiomatic Basis for Computer Programming.
Comm. ACM, 12 (1969), 576.

[51] Holler, C., Herzig, K., and Zeller, A. Fuzzing with code frag-
ments. In 21st USENIX Security Symposium (USENIX Security 12), pp.
445–458. USENIX Association, Bellevue, WA (2012). ISBN 978-931971-95-9.
Available from: https://www.usenix.org/conference/usenixsecurity12/

technical-sessions/presentation/holler.

[52] Huang, H., Yao, P., Wu, R., Shi, Q., and Zhang, C. Pangolin:
Incremental hybrid fuzzing with polyhedral path abstraction. In 2020
IEEE Symposium on Security and Privacy (SP), pp. 1613–1627. IEEE Com-
puter Society, Los Alamitos, CA, USA (2020). Available from: https:

//doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063, doi:10.

1109/SP40000.2020.00063.

http://dl.acm.org/citation.cfm?id=3155562.3155573
https://github.com/google/fuzzer-test-suite
https://blog.regehr.org/archives/1796
https://blog.regehr.org/archives/1796
https://doi.org/10.1145/581339.581377
http://dx.doi.org/10.1145/581339.581377
http://dx.doi.org/10.1109/TSE.1977.231133
http://dx.doi.org/10.1109/TSE.1977.231133
http://arxiv.org/abs/2009.01120
https://doi.org/10.1007/BF00289507
http://dx.doi.org/10.1007/BF00289507
http://dx.doi.org/10.1007/BF00289507
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
http://dx.doi.org/10.1109/SP40000.2020.00063
http://dx.doi.org/10.1109/SP40000.2020.00063

Bibliography 65

[53] Jonathan Metzman, L. S., Abhishek Arya. FuzzBench: Fuzzer bench-
marking as a service. Google Security Blog (2020).

[54] Klees, G., Ruef, A., Cooper, B., Wei, S., and Hicks, M. Eval-
uating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’18, pp. 2123–
2138. Association for Computing Machinery, New York, NY, USA (2018).
ISBN 9781450356930. Available from: https://doi.org/10.1145/3243734.

3243804, doi:10.1145/3243734.3243804.

[55] Lamport, L. Proving the correctness of multiprocess programs. IEEE
transactions on software engineering, (1977), 125.

[56] Lattner, C. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s
thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,
Urbana, IL (2002). See http://llvm.cs.uiuc.edu.

[57] Lattner, C. and Adve, V. The LLVM Compiler Framework and In-
frastructure Tutorial. In LCPC’04 Mini Workshop on Compiler Research
Infrastructures. West Lafayette, Indiana (2004).

[58] Laycock, G. T. The theory and practice of specification based software
testing. Ph.D. thesis, Citeseer.

[59] Le Lann, G. An analysis of the ariane 5 flight 501 failure - a system
engineering perspective. In Proceedings of the 1997 International Conference
on Engineering of Computer-Based Systems, ECBS’97, pp. 339–346. IEEE
Computer Society, USA (1997). ISBN 0818678895.

[60] Lemieux, C., Padhye, R., Sen, K., and Song, D. Perffuzz: Automatically
generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018, pp.
254–265. Association for Computing Machinery, New York, NY, USA (2018).
ISBN 9781450356992. Available from: https://doi.org/10.1145/3213846.

3213874, doi:10.1145/3213846.3213874.

[61] Leveson, N. G. and Turner, C. S. An investigation of the therac-25
accidents. Computer, 26 (1993), 18. Available from: https://doi.org/10.

1109/MC.1993.274940, doi:10.1109/MC.1993.274940.

[62] LLVM Project. LibFuzzer - Value Profile. Available from: https://llvm.

org/docs/LibFuzzer.html#value-profile.

https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
http://dx.doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3213846.3213874
https://doi.org/10.1145/3213846.3213874
http://dx.doi.org/10.1145/3213846.3213874
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1109/MC.1993.274940
http://dx.doi.org/10.1109/MC.1993.274940
https://llvm.org/docs/LibFuzzer.html#value-profile
https://llvm.org/docs/LibFuzzer.html#value-profile

66 Bibliography

[63] LLVM Project. libFuzzer – a library for coverage-guided fuzz testing. (2018).
Available from: https://llvm.org/docs/LibFuzzer.html.

[64] Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.-H., Song, Y., and Beyah, R.
MOPT: Optimized mutation scheduling for fuzzers. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 1949–1966. USENIX Association,
Santa Clara, CA (2019). ISBN 978-1-939133-06-9. Available from: https:

//www.usenix.org/conference/usenixsecurity19/presentation/lyu.

[65] Maier, D., Radtke, B., and Harren, B. Unicorefuzz: On the viability of
emulation for kernelspace fuzzing. In 13th USENIX Workshop on Offensive
Technologies (WOOT 19). USENIX Association, Santa Clara, CA (2019). Avail-
able from: https://www.usenix.org/conference/woot19/presentation/

maier.

[66] Manès, V. J. M., Han, H., Han, C., Cha, S. K., Egele, M., Schwartz,
E. J., and Woo, M. The art, science, and engineering of fuzzing: A survey.
IEEE Transactions on Software Engineering, xxx (2019), xxx.

[67] Manès, V. J. M., Kim, S., and Cha, S. K. Ankou: Guiding grey-box
fuzzing towards combinatorial difference. pp. 1024–1036 (2020).

[68] Mathis, B., Gopinath, R., and Zeller, A. Learning input tokens
for effective fuzzing. In ISSTA ’20: 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, USA, July
18-22, 2020 (edited by S. Khurshid and C. S. Pasareanu), pp. 27–37.
ACM (2020). Available from: https://doi.org/10.1145/3395363.3397348,
doi:10.1145/3395363.3397348.

[69] Maurício Aniche. Software Testing: From Theory to Practice (2020).
Available from: https://sttp.site/.

[70] Muench, M., Stijohann, J., Kargl, F., Francillon, A., and
Balzarotti, D. What you corrupt is not what you crash: Challenges
in fuzzing embedded devices. In NDSS 2018, Network and Distributed Sys-
tems Security Symposium, 18-21 February 2018, San Diego, CA, USA. San
Diego, UNITED STATES (2018). Available from: http://www.eurecom.fr/

publication/5417.

[71] Nethercote, N. and Seward, J. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of ACM SIGPLAN 2007

https://llvm.org/docs/LibFuzzer.html
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/woot19/presentation/maier
https://www.usenix.org/conference/woot19/presentation/maier
https://doi.org/10.1145/3395363.3397348
http://dx.doi.org/10.1145/3395363.3397348
https://sttp.site/
http://www.eurecom.fr/publication/5417
http://www.eurecom.fr/publication/5417

Bibliography 67

Conference on Programming Language Design and Implementation (PLDI
2007), pp. 89–100. San Diego, California, USA (2007).

[72] Ngyuen, A. Q. and Dang, H. V. Unicorn: Next generation cpu emula-
tor framework (2020). Available from: http://www.unicorn-engine.org/

BHUSA2015-unicorn.pdf.

[73] Österlund, S., Razavi, K., Bos, H., and Giuffrida, C. Parme-
San: Sanitizer-guided Greybox Fuzzing. In USENIX Security (2020). Avail-
able from: Paper=https://download.vusec.net/papers/parmesan_sec20.

pdfCode=https://github.com/vusec/parmesan.

[74] Padhye, R., Lemieux, C., Sen, K., Papadakis, M., and Le Traon,
Y. Semantic fuzzing with zest. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, pp.
329–340. Association for Computing Machinery, New York, NY, USA (2019).
ISBN 9781450362245. Available from: https://doi.org/10.1145/3293882.

3330576, doi:10.1145/3293882.3330576.

[75] Padhye, R., Lemieux, C., Sen, K., Simon, L., and Vijayakumar, H.
Fuzzfactory: Domain-specific fuzzing with waypoints. Proc. ACM Program.
Lang., 3 (2019). Available from: https://doi.org/10.1145/3360600, doi:

10.1145/3360600.

[76] Pattabiraman, K., Saggese, G. P., Chen, D., Kalbarczyk, Z., and
Iyer, R. Automated derivation of application-specific error detectors using
dynamic analysis. IEEE Transactions on Dependable and Secure Computing,
8 (2010), 640.

[77] Peng, H. and Payer, M. Usbfuzz: A framework for fuzzing USB drivers by
device emulation. In 29th USENIX Security Symposium (USENIX Security
20), pp. 2559–2575. USENIX Association (2020). ISBN 978-1-939133-17-5.
Available from: https://www.usenix.org/conference/usenixsecurity20/

presentation/peng.

[78] Peng, H., Shoshitaishvili, Y., and Payer, M. T-fuzz: Fuzzing by program
transformation. In 2018 IEEE Symposium on Security and Privacy (SP), pp.
697–710 (2018). Available from: https://doi.org/10.1109/SP.2018.00056,
doi:10.1109/SP.2018.00056.

http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
http://www.unicorn-engine.org/BHUSA2015-unicorn.pdf
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
Paper=https://download.vusec.net/papers/parmesan_sec20.pdf Code=https://github.com/vusec/parmesan
https://doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3293882.3330576
http://dx.doi.org/10.1145/3293882.3330576
https://doi.org/10.1145/3360600
http://dx.doi.org/10.1145/3360600
http://dx.doi.org/10.1145/3360600
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://doi.org/10.1109/SP.2018.00056
http://dx.doi.org/10.1109/SP.2018.00056

68 Bibliography

[79] Pham, V., Boehme, M., Santosa, A. E., Caciulescu, A. R., and
Roychoudhury, A. Smart greybox fuzzing. IEEE Transactions on Software
Engineering, (2019). doi:10.1109/TSE.2019.2941681.

[80] Pham, V., Böhme, M., and Roychoudhury, A. Aflnet: A greybox
fuzzer for network protocols. In Proceedings of the 13rd IEEE International
Conference on Software Testing, Verification and Validation : Testing Tools
Track (2020).

[81] Poeplau, S. and Francillon, A. Symbolic execution with symcc: Don’t
interpret, compile! In 29th USENIX Security Symposium (USENIX Secu-
rity 20), pp. 181–198. USENIX Association (2020). ISBN 978-1-939133-17-5.
Available from: https://www.usenix.org/conference/usenixsecurity20/

presentation/poeplau.

[82] Prosser, R. T. Applications of boolean matrices to the analysis of flow
diagrams. In Papers Presented at the December 1-3, 1959, Eastern Joint
IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern), pp.
133–138. Association for Computing Machinery, New York, NY, USA (1959).
ISBN 9781450378680. Available from: https://doi.org/10.1145/1460299.

1460314, doi:10.1145/1460299.1460314.

[83] Quintao Pereira, F. M., Rodrigues, R. E., and Sperle Campos,
V. H. A fast and low-overhead technique to secure programs against integer
overflows. In Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), CGO ’13, pp. 1–11. IEEE
Computer Society, USA (2013). ISBN 9781467355247. Available from: https:

//doi.org/10.1109/CGO.2013.6494996, doi:10.1109/CGO.2013.6494996.

[84] Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., and
Bos, H. Vuzzer: Application-aware evolutionary fuzzing. In 24th An-
nual Network and Distributed System Security Symposium, NDSS (2017).
Available from: https://www.ndss-symposium.org/ndss2017/ndss-2017-

programme/vuzzer-application-aware-evolutionary-fuzzing/.

[85] Reed Hastings, B. J. Purify: Fast detection of memory leaks and access
errors. In In proc. of the winter 1992 usenix conference. Citeseer (1991).

[86] Rice, H. G. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society, 74 (1953), 358. Available
from: http://www.jstor.org/stable/1990888.

http://dx.doi.org/10.1109/TSE.2019.2941681
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://doi.org/10.1145/1460299.1460314
https://doi.org/10.1145/1460299.1460314
http://dx.doi.org/10.1145/1460299.1460314
https://doi.org/10.1109/CGO.2013.6494996
https://doi.org/10.1109/CGO.2013.6494996
http://dx.doi.org/10.1109/CGO.2013.6494996
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
http://www.jstor.org/stable/1990888

Bibliography 69

[87] Rosen, B. K., Wegman, M. N., and Zadeck, F. K. Global value numbers
and redundant computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’88, pp.
12–27. Association for Computing Machinery, New York, NY, USA (1988).
ISBN 0897912527. Available from: https://doi.org/10.1145/73560.73562,
doi:10.1145/73560.73562.

[88] Schumilo, S., Aschermann, C., Gawlik, R., Schinzel, S., and Holz,
T. Kafl: Hardware-assisted feedback fuzzing for os kernels. In Proceedings of
the 26th USENIX Conference on Security Symposium, SEC’17, pp. 167–182.
USENIX Association, USA (2017). ISBN 9781931971409.

[89] Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D.
Addresssanitizer: A fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference, USENIX ATC’12, p. 28.
USENIX Association (2012).

[90] Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Cor-
betta, J., Shoshitaishvili, Y., Kruegel, C., and Vigna, G. Driller:
Augmenting fuzzing through selective symbolic execution. In NDSS, vol. 16,
pp. 1–16 (2016).

[91] Swiecki, R. Honggfuzz. [Online; accessed 1. Sep. 2020]. Available from:
https://github.com/google/honggfuzz.

[92] Tillmann, N., Chen, F., and Schulte, W. Discovering likely method
specifications. In International Conference on Formal Engineering Methods,
pp. 717–736. Springer (2006).

[93] Vranken, G. VrankenFuzz a multi-sensor, multi-generator mutational
fuzz testing engine. https://guidovranken.files.wordpress.com/2018/

07/vrankenfuzz.pdf (2018).

[94] Vyukov, D. syzkaller - kernel fuzzer. [Online; accessed 10. Sep. 2020].
Available from: https://github.com/google/syzkaller.

[95] Wang, J., Duan, Y., Song, W., Yin, H., and Song, C. Be sensitive and
collaborative: Analyzing impact of coverage metrics in greybox fuzzing. In 22nd
International Symposium on Research in Attacks, Intrusions and Defenses
(RAID 2019), pp. 1–15. USENIX Association, Chaoyang District, Beijing

https://doi.org/10.1145/73560.73562
http://dx.doi.org/10.1145/73560.73562
https://github.com/google/honggfuzz
https://guidovranken.files.wordpress.com/2018/07/vrankenfuzz.pdf
https://guidovranken.files.wordpress.com/2018/07/vrankenfuzz.pdf
https://github.com/google/syzkaller

70 Bibliography

(2019). ISBN 978-1-939133-07-6. Available from: https://www.usenix.org/

conference/raid2019/presentation/wang.

[96] Weyuker, E. J. and Jeng, B. Analyzing partition testing strategies. IEEE
Transactions on Software Engineering, 17 (1991), 703.

[97] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and under-
standing bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’11,
p. 283–294. Association for Computing Machinery, New York, NY, USA (2011).
ISBN 9781450306638. Available from: https://doi.org/10.1145/1993498.

1993532, doi:10.1145/1993498.1993532.

[98] Yun, I., Lee, S., Xu, M., Jang, Y., and Kim, T. Qsym: A practical
concolic execution engine tailored for hybrid fuzzing. In Proceedings of the 27th
USENIX Conference on Security Symposium, SEC’18, pp. 745–761. USENIX
Association, USA (2018). ISBN 9781931971461.

[99] Zalewski, M. American Fuzzy Lop - Whitepaper. https://lcamtuf.

coredump.cx/afl/technical_details.txt (2016).

[100] Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., and Sun, L.
Firm-afl: High-throughput greybox fuzzing of iot firmware via augmented
process emulation. In 28th USENIX Security Symposium (USENIX Security
19), pp. 1099–1114. USENIX Association, Santa Clara, CA (2019). ISBN
978-1-939133-06-9. Available from: https://www.usenix.org/conference/

usenixsecurity19/presentation/zheng.

https://www.usenix.org/conference/raid2019/presentation/wang
https://www.usenix.org/conference/raid2019/presentation/wang
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/1993498.1993532
http://dx.doi.org/10.1145/1993498.1993532
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng

	Introduction
	Contributions
	Structure of the Thesis

	Basics of Software Testing
	Correctness
	Validation and Verification
	Properties of Testing
	Automation in Testing
	Efficiency Criteria

	Testing Techniques
	Specification-based Testing
	Structural Testing
	Model-based Testing
	Property-based Testing

	The Art of Fuzzing
	Generic Definitions
	Fuzzers Classification
	Feedback-driven Fuzzing
	Oracle
	Observation Channel
	Executor
	Feedback
	Input
	Corpus
	Mutator
	Generator
	Stage

	Challenges
	Roadblocks
	Invalid inputs
	Faults without Failures
	State Tracking
	Path Explosion
	Scaling Implementations
	Hard Targets

	Evaluation Criteria

	Methodology
	Definitions
	The Basic Block State
	Program State Abstraction
	Mining Subspaces
	An Invariants-based Coverage
	Pruning Invariants
	Comparability Calculation
	Inviolable Invariants
	Deduplicate Invariants

	Corpus selection
	Discussion

	Implementation
	The Low Level Virtual Machine Infrastructure
	The Daikon invariant detector
	The AFL++ fuzzing framework
	The InvsCov pipeline
	Dumper compilation
	Online learning
	Checks generation
	Target compilation

	Evaluation
	Setup and Dataset
	Efficiency in finding faults
	Performance overhead
	Discussion

	Conclusion
	Future directions

